Project description:In adults, sleep is necessary for the offline improvement of certain skills, such as sequential finger tapping, but whether children show a similar effect is still debatable. Here, we tested whether sleep is associated with offline performance improvement in children. Nine- and 11-year-old children trained on an explicit sequential finger tapping task. On the night following training, their parents observed and recorded the duration of each child's sleep. The following day, all children performed a surprise retest session on the previously trained sequence. In both 9- and 11-year-old children, skill performance was significantly improved during the first retest session relative to the end of training on the previous day, confirming the offline improvement in performance. There was a significant correlation between the degree of improvement and sleep duration the night after training, suggesting that in children, as in adults, sleep is associated with offline skill enhancement.
Project description:Patients with atrophy in motor brain regions exhibit selective deficits in processing action-related meanings, suggesting a link between movement conceptualization and the amount of regional tissue. Here we examine such a relation in a unique opposite model: a rare patient with a double cortex (due to subcortical band heterotopia) in primary/supplementary motor regions, and no double cortex in multimodal semantic regions. We measured behavioral performance in action- and object-concept processing as well and resting-state functional connectivity. Both dimensions involved comparisons with healthy controls. Results revealed preserved accuracy in action and object categories for the patient. However, unlike controls, the patient exhibited faster performance for action than object concepts, a difference that was uninfluenced by general cognitive abilities. Moreover, this pattern was accompanied by heightened functional connectivity between the bilateral primary motor cortices. This suggests that a functionally active double motor cortex may entail action-processing advantages. Our findings offer new constraints for models of action semantics and motor-region function at large.
Project description:Many daily activities involve synchronizing with other people's actions. Previous literature has revealed that a slowdown of performance occurs whenever the action to be carried out is different to the one observed (i.e., visuomotor interference). However, action execution can be facilitated by observing a different action if it calls for an interactive gesture (i.e., social motor priming). The aim of this study is to investigate the costs and benefits of spontaneously processing a social response and then executing the same or a different action. Participants performed two different types of grips, which could be either congruent or not with the socially appropriate response and with the observed action. In particular, participants performed a precision grip (PG; thumb-index fingers opposition) or a whole-hand grasp (WHG; fingers-palm opposition) after observing videos showing an actor performing a PG and addressing them (interactive condition) or not (non-interactive condition). Crucially, in the interactive condition, the most appropriate response was a WHG, but in 50 percent of trials participants were asked to perform a PG. This procedure allowed us to measure both the facilitator effect of performing an action appropriate to the social context (WHG)-but different with respect to the observed one (PG)-and the cost of inhibiting it. These effects were measured by means of 3-D kinematical analysis of movement. Results show that, in terms of reaction time and movement time, the interactive request facilitated (i.e., speeded) the socially appropriate action (WHG), whereas interfered with (i.e., delayed) a different action (PG), although observed actions were always PGs. This interference also manifested with an increase of maximum grip aperture, which seemingly reflects the concurrent representation of the socially appropriate response. Overall, these findings extend previous research by revealing that physically incongruent action representations can be integrated into a single action plan even during an offline task and without any training.
Project description:All movements are thought to be "prepared" in the brain before initiation, and preparation can be impaired in motor diseases. However, little is known about what sort of preparation precedes self-initiated, naturally learned sequences of movements. Here we took advantage of a canonical example of a precisely timed learned motor sequence, adult zebra finch song, to examine motor preparation. We found that the sequences of short vocalizations, or introductory notes (INs), preceding song gradually increased in speed and converged on an acoustic endpoint highly similar across renditions, just before song initiation. The more the initial IN differed acoustically from the final IN, the greater the number of INs produced presong. Moreover, the song premotor nucleus HVC exhibited IN-related neural activity that progressed to a distinctive endpoint immediately before song. Together, our behavioral and neural data suggest that INs reflect a variable period of preparation during which the brain attains a common "ready" state each time sequence generation is about to begin.
Project description:IntroductionShort post-learning breaks, lasting from 5 to 30 min, transiently enhance procedural motor memory performance in adults. However, the impact of activity type (active vs. passive) during the offline break on sequential motor performance remains poorly investigated in children.MethodThis study examined the impact of active versus passive post-learning breaks on procedural motor memory in 116 healthy participants (58 children, aged 9.03 ± 1.19; 58 adults, aged 22.89 ± 1.77 years). Participants practiced a Finger Tapping Task, reproducing a five-element keypress sequence as fast and accurately as possible. The task included two sessions (S1 and S2) separated by either a short (30 min) or long (4 h) break. The first 30-min of the post-learning break included either a passive (remaining still) or an active (engaging in daily activities) condition.ResultsRepeated-measures ANOVA revealed significant Session × Age group × Break duration and Session × Break type interaction effects (ps < 0.05). Post hoc analyses indicated Session effects in adults after both Break types, but only after short Break duration (S1 < S2, p < 0.001; long delay p = 0.1). In children, Session effects were observed after both short and long breaks, but only in the active Break type (S1 < S2, ps < 0.001; passive condition p = 0.1).ConclusionThese results revealed spontaneous post-learning motor performance improvements at both short and long delays in children, but only in the active post-training condition, unlike adults who showed improvements only at short delays, regardless of activity type. This suggests developmental differences in offline conditions (duration and activity) linked to plasticity mechanisms underlying procedural motor memory consolidation.
Project description:Extraction of environmental patterns underlies human learning throughout the lifespan and plays a crucial role not only in cognitive but also perceptual, motor, and social skills. At least two types of regularities contribute to acquiring skills: (1) statistical, probability-based regularities, and (2) serial order-based regularities. Memory performance of probability-based and/or serial order-based regularities over short periods (from minutes to weeks) has been widely investigated across the lifespan. However, long-term (months or year-long) memory performance of such knowledge has received relatively less attention and has not been assessed in children yet. Here, we aimed to test the long-term memory performance of probability-based and serial order-based regularities over a 1-year offline period in neurotypical children between the age of 9 and 15. Participants performed a visuomotor four-choice reaction time task designed to measure the acquisition of probability-based and serial order-based regularities simultaneously. Short-term consolidation effects were controlled by retesting their performance after a 5-h delay. They were then retested on the same task 1 year later without any practice between the sessions. Participants successfully acquired both probability-based and serial order-based regularities and retained both types of knowledge over the 1-year period. The successful retention was independent of age. Our study demonstrates that the representation of probability-based and serial order-based regularities remains stable over a long period of time. These findings offer indirect evidence for the developmental invariance model of skill consolidation.
Project description:Children's fine motor skills (FMS) link to cognitive development, however, research on their involvement in language processing, also with adults, is scarce. Lexical items are processed differently depending on the degree of sensorimotor information inherent in the words' meanings, such as whether these imply a body-object interaction (BOI) or a body-part association (i.e., hand, arm, mouth, foot). Accordingly, three studies examined whether lexical processing was affected by FMS, BOIness, and body-part associations in children (study 1, n = 77) and adults (study 2, n = 80; study 3, n = 71). Analyses showed a differential link between FMS and lexical processing as a function of age. Whereas response latencies indicated that children's FMS were associated with "hand" words, adults' FMS linked to the broader concept of BOI. Findings have implications for shared activation theories positing that FMS support lexical processing.
Project description:Developmental coordination disorder (DCD) describes a condition of poor motor performance in the absence of intellectual impairment. Despite being one of the most prevalent developmental disorders, little is known about how fundamental visuomotor processes might function in this group. One prevalent idea is children with DCD interact with their environment in a less predictive fashion than typically developing children. A metric of prediction which has not been examined in this group is the degree to which the hands and eyes are coordinated when performing manual tasks. To this end, we examined hand and eye movements during an object lifting task in a group of children with DCD (n = 19) and an age-matched group of children without DCD (n = 39). We observed no differences between the groups in terms of how well they coordinated their hands and eyes when lifting objects, nor in terms of the degree by which the eye led the hand. We thus find no evidence to support the proposition that children with DCD coordinate their hands and eyes in a non-predictive fashion. In a follow-up exploratory analysis we did, however, note differences in fundamental patterns of eye movements between the groups, with children in the DCD group showing some evidence of atypical visual sampling strategies and gaze anchoring behaviours during the task.
Project description:Developmental Dyslexia (DD) is a condition in which reading accuracy and/or fluency falls substantially below what is expected based on the individuals age, general level of cognitive ability, and educational opportunities. The procedural circuit deficit hypothesis (PDH) proposes that DD may be largely explained in terms of alterations of the cortico-basal ganglia procedural memory system (in particular of the striatum) whereas the (hippocampus-dependent) declarative memory system is intact, and may serve a compensatory role in the condition. The present study was designed to test this hypothesis. Using Magnetic Resonance Imaging, we examined the functional and structural brain correlates of sequence-specific procedural learning (SL) on the serial reaction time task, in 17 children with DD and 18 typically developing (TD) children. The study was performed over 2 days with a 24-h interval between sessions. In line with the PDH, the DD group showed less activation of the striatum during the processing of sequential statistical regularities. These alterations predicted the amount of SL at day 2, which in turn explained variance in children's reading fluency. Additionally, reduced hippocampal activation predicted larger SL gains between day 1 and day 2 in the TD group, but not in the DD group. At the structural level, caudate nucleus volume predicted the amount of acquired SL at day 2 in the TD group, but not in the DD group. The findings encourage further research into factors that promote learning in children with DD, including through compensatory mechanisms.
Project description:Long calibration time hinders the feasibility of brain-computer interfaces (BCI). If other subjects' data were used for training the classifier, BCI-based neurofeedback practice could start without the initial calibration. Here, we compare methods for inter-subject decoding of left- vs. right-hand motor imagery (MI) from MEG and EEG. Six methods were tested on data involving MEG and EEG measurements of healthy participants. Inter-subject decoders were trained on subjects showing good within-subject accuracy, and tested on all subjects, including poor performers. Three methods were based on Common Spatial Patterns (CSP), and three others on logistic regression with l1 - or l2,1 -norm regularization. The decoding accuracy was evaluated using (1) MI and (2) passive movements (PM) for training, separately for MEG and EEG. With MI training, the best accuracies across subjects (mean 70.6% for MEG, 67.7% for EEG) were obtained using multi-task learning (MTL) with logistic regression and l2,1-norm regularization. MEG yielded slightly better average accuracies than EEG. With PM training, none of the inter-subject methods yielded above chance level (58.7%) accuracy. In conclusion, MTL and training with other subject's MI is efficient for inter-subject decoding of MI. Passive movements of other subjects are likely suboptimal for training the MI classifiers.