Project description:The lesser kestrel (Falco naumanni) suffered a sharp population decline over much of its European distribution range in the middle of the twentieth century. Still declining in some areas, the species has recently experienced a notable population recovery in certain regions. We examined the genetic diversity variation in a growing population of lesser kestrels from Central Spain over a 6-year period (2000-2005). The population studied showed a rapid demographic expansion, increasing in the number of both breeding pairs and colonies. Annual average heterozygosity and allelic diversity increased and genetic similarity between potential mates decreased over the study period. Several immigrants regularly arrived in the study area and introduced new alleles into the local population, pointing to immigration as the main cause contributing to the observed genetic recovery.
Project description:Costs and benefits of brain lateralization may depend on environmental conditions. Growing evidence indicates that the development of brain functional asymmetries is adaptively shaped by the environmental conditions experienced during early life. Food availability early in life could act as a proxy of the environmental conditions encountered during adulthood, but its potential modulatory effect on lateralization has received little attention. We increased food supply from egg laying to early nestling rearing in a wild population of lesser kestrels Falco naumanni, a sexually dimorphic raptor, and quantified the lateralization of preening behavior (head turning direction). As more lateralized individuals may perform better in highly competitive contexts, we expected that extra food provisioning, by reducing the level of intra-brood competition for food, would reduce the strength of lateralization. We found that extra food provisioning improved nestling growth, but it did not significantly affect the strength or direction of nestling lateralization. In addition, maternal body condition did not explain variation in nestling lateralization. Independently of extra food provisioning, the direction of lateralization differed between the sexes, with female nestlings turning more often toward their right. Our findings indicate that early food availability does not modulate behavioral lateralization in a motor task, suggesting limited phenotypic plasticity in this trait.
Project description:Climate change is predicted to severely impact interactions between prey, predators and habitats. In Southern Europe, within the Mediterranean climate, herbaceous vegetation achieves its maximum growth in middle spring followed by a three-month dry summer, limiting prey availability for insectivorous birds. Lesser kestrels (Falco naumanni) breed in a time-window that matches the nestling-rearing period with the peak abundance of grasshoppers and forecasted climate change may impact reproductive success through changes in prey availability and abundance. We used Normalised Difference Vegetation Index (NDVI) as a surrogate of habitat quality and prey availability to investigate the impacts of forecasted climate change and extreme climatic events on lesser kestrel breeding performance. First, using 14 years of data from 15 colonies in Southwestern Iberia, we linked fledging success and climatic variables with NDVI, and secondly, based on these relationships and according to climatic scenarios for 2050 and 2070, forecasted NDVI and fledging success. Finally, we evaluated how fledging success was influenced by drought events since 2004. Despite predicting a decrease in vegetation greenness in lesser kestrel foraging areas during spring, we found no impacts of predicted gradual rise in temperature and decline in precipitation on their fledging success. Notwithstanding, we found a decrease of 12% in offspring survival associated with drought events, suggesting that a higher frequency of droughts might, in the future, jeopardize the recent recovery of the European population. Here, we show that extreme events, such as droughts, can have more significant impacts on species than gradual climatic changes, especially in regions like the Mediterranean Basin, a biodiversity and climate change hotspot.
Project description:Individuals allocate considerable amounts of energy to movement, which ultimately affects their ability to survive and reproduce. Birds fly by flapping their wings, which is dependent on the chemical energy produced by muscle work, or use soaring-gliding flight, in which chemical energy is replaced with energy harvested from moving air masses, such as thermals. Flapping flight requires more energy than soaring-gliding flight, and this difference in the use of energy increases with body mass. However, soaring-gliding results in lower speeds than flapping, especially for small species. Birds therefore face a trade-off between energy and time costs when deciding which flight strategy to use. Raptors are a group of large birds that typically soar. As relatively light weight raptors, falcons can either soar on weak thermals or fly by flapping with low energy costs. In this paper, we study the flight behavior of the insectivorous lesser kestrel (Falco naumanni) during foraging trips and the influence of solar radiation, which we have adopted as a proxy for thermal formation, on kestrel flight variables. We tracked 35 individuals from two colonies using high frequency GPS-dataloggers over four consecutive breeding seasons. Contrary to expectations, kestrels relied heavily on thermal soaring when foraging, especially during periods of high solar radiation. This produced a circadian pattern in the kestrel flight strategy that led to a spatial segregation of foraging areas. Kestrels flapped towards foraging areas close to the colony when thermals were not available. However, as soon as thermals were formed, they soared on them towards foraging areas far from the colony, especially when they were surrounded by poor foraging habitats. This reduced the chick provisioning rate at the colony. Given that lesser kestrels have a preference for feeding on large insects, and considering the average distance they cover to capture them during foraging trips, to commute using flapping flight would result in a negative energy balance for the family group. Our results show that lesser kestrels prioritize saving energy when foraging, suggesting that kestrels are more energy than time-constrained during the breeding season.
Project description:Deformed wing virus (DWV) is one of the most prevalent honey bee viral pathogens in the world. Typical of many RNA viruses, DWV is a quasi-species, which is comprised of a large number of different variants, currently consisting of three master variants: Type A, B, and C. Little is known about the impact of each variant or combinations of variants upon the biology of individual hosts. Therefore, we have developed a new set of master variant-specific DWV primers and a set of standards that allow for the quantification of each of the master variants. Competitive reverse transcriptase polymerase chain reaction (RT-PCR) experimental design confirms that each new DWV primer set is specific to the retrospective master variant. The sensitivity of the ABC assay is dependent on whether DNA or RNA is used as the template and whether other master variants are present in the sample. Comparison of the overall proportions of each master variant within a sample of known diversity, as confirmed by next-generation sequence (NGS) data, validates the efficiency of the ABC assay. The ABC assay was used on archived material from a Devon overwintering colony loss (OCL) 2006-2007 study; further implicating DWV type A and, for the first time, possibly C in the untimely collapse of honey bee colonies. Moreover, in this study DWV type B was not associated with OCL. The use of the ABC assay will allow researchers to quickly and cost effectively pre-screen for the presence of DWV master variants in honey bees.
Project description:The virosphere is largely unexplored and the majority of viruses are yet to be represented in public sequence databases. Bats are rich reservoirs of viruses, including several zoonoses. In this study, high throughput sequencing (HTS) of viral RNA extracted from swabs of four body sites per bat per timepoint is used to characterize the virome through a longitudinal study of a captive colony of fruit nectar bats, species Eonycteris spelaea in Singapore. Through unbiased shotgun and target enrichment sequencing, we identify both known and previously unknown viruses of zoonotic relevance and define the population persistence and temporal patterns of viruses from families that have the capacity to jump the species barrier. To our knowledge, this is the first study that combines probe-based viral enrichment with HTS to create a viral profile from multiple swab sites on individual bats and their cohort. This work demonstrates temporal patterns of the lesser dawn bat virome, including several novel viruses. Given the known risk for bat-human zoonoses, a more complete understanding of the viral dynamics in South-eastern Asian bats has significant implications for disease prevention and control. The findings of this study will be of interest to U.S. Department of Defense personnel stationed in the Asia-Pacific region and regional public health laboratories engaged in emerging infectious disease surveillance efforts.
Project description:Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) independently cause human cancers, and both are maintained as plasmids in tumor cells. They differ, however, in their mechanisms of segregation; EBV partitions its genomes quasi-faithfully, while KSHV often clusters its genomes and partitions them randomly. Both viruses can infect the same B-cell to transform it in vitro and to cause primary effusion lymphomas (PELs) in vivo. We have developed simulations based on our measurements of these replicons in B-cells transformed in vitro to elucidate the synthesis and partitioning of these two viral genomes when in the same cell. These simulations successfully capture the biology of EBV and KSHV in PELs. They have revealed that EBV and KSHV replicate and partition independently, that they both contribute selective advantages to their host cell, and that KSHV pays a penalty to cluster its genomes.
Project description:All organisms are challenged by encounters with parasites, which strongly select for efficient escape strategies in the host. The threat is especially high for gregarious species entering immobile periods, such as diapause. Larvae of the Glanville fritillary butterfly, Melitaea cinxia, spend the winter in diapause in groups of conspecifics each sheltered in a silk nest. Despite intensive monitoring of the population, we have little understanding of the ecological factors influencing larval survival over the winter in the field. We tested whether qualitative and quantitative properties of the silk nest contribute to larval survival over diapause. We used comparative proteomics, metabarcoding analyses, microscopic imaging, and in vitro experiments to compare protein composition of the silk, community composition of the silk-associated microbiota, and silk density from both wild-collected and laboratory-reared families, which survived or died in the field. Although most traits assessed varied across families, only silk density was correlated with overwinter survival in the field. The silk nest spun by gregarious larvae before the winter acts as an efficient breathable physical shield that positively affects larval survival during diapause. Such benefit may explain how this costly trait is conserved across populations of this butterfly species and potentially across other silk-spinning insect species.
Project description:As the world experiences rapid urban expansion, natural landscapes are being transformed into cities at an alarming rate. Consequently, urbanization is identified as one of the biggest environmental challenges of our time, yet we lack a clear understanding of how urbanization affects free-living organisms. Urbanization leads to habitat fragmentation and increased impervious surfaces affecting for example availability and quality of food. Urbanization is also associated with increased pollution levels that can affect organisms directly, via ecophysiological constraints and indirectly by disrupting trophic interactions in multi-species networks. Birds are highly mobile, while an individual is not necessarily exposed to urban stressors around the clock, but nestlings of altricial birds are. Such a city-dwelling species with a long nestling phase is the Eurasian kestrel (Falco tinnunculus) in Vienna, Austria, which forage on a diverse diet differing in composition from rural habitats. Furthermore, prey items vary in nutritional value and contents of micronutrients like carotenoids, which might impact the nestlings' health. Carotenoids are pigments that are incorporated into integument tissues but also have antioxidant and immunostimulatory capacity, resulting in a trade-off between these functions. In nestlings these pigments function in parent-offspring communication or sibling competition by advertising an individual's physical or physiological condition. Anthropogenic disturbance and pollutants could have disruptive effects on the coloration of these traits. In this study, we measured carotenoid based coloration and other indicators of individual health (body condition and susceptibility to the ectoparasite Carnus hemapterus) of 154 nestling kestrels (n = 91 nests) along an urban gradient from 2010 to 2015. We found skin yellowness of nestlings from nest-sites in the city-center to be least pronounced. This result might indicate that inner-city nestlings are strongly affected by urban stressors and depleted their stores of dietary carotenoids for health-related functions rather than coloration. In addition, skin yellowness intensified with age and was stronger pronounced in earlier nests. Since the immune system of nestlings is still developing, younger chicks might need more antioxidants to combat environmental stress. Additionally, parasite infection intensity was highest in nestlings with less intense skin yellowness (paler or less yellow pigmented integuments) and in earlier nests of the season. In combination with results from previous studies, our findings provide further support for the low quality of the inner-city habitat, both in terms of productivity and individual health.
Project description:The bowhead whale is the only baleen whale endemic to the Arctic and is well adapted to this environment. Bowheads live near the polar ice edge for much of the year and although sea ice dynamics are not the only driver of their annual migratory movements, it likely plays a key role. Given the intrinsic variability of open water and ice, one might expect bowhead migratory plasticity to be high and linked to this proximate environmental factor. Here, through a network of underwater passive acoustic recorders, we document the first known occurrence of bowheads overwintering in what is normally their summer foraging grounds in the Amundsen Gulf and eastern Beaufort Sea. The underlying question is whether this is the leading edge of a phenological shift in a species' migratory behaviour in an environment undergoing dramatic shifts due to climate change.