Project description:Over the last few years, the potential of non-Saccharomyces yeasts to improve the sensory quality of wine has been well recognized. In particular, the use of Starmerella bacillaris in mixed fermentations with Saccharomyces cerevisiae was reported as an appropriate way to enhance glycerol formation and reduce ethanol production. However, during sequential fermentation, many factors, such as the inoculation timing, strain combination, and physical and biochemical interactions, can affect yeast growth, the fermentation process, and/or metabolite synthesis. Among them, the availability of yeast-assimilable nitrogen (YAN), due to its role in the control of growth and fermentation, has been identified as a key parameter. Consequently, a comprehensive understanding of the metabolic specificities and the nitrogen requirements would be valuable to better exploit the potential of Starm. bacillaris during wine fermentation. In this study, marked differences in the consumption of the total and individual nitrogen sources were registered between the two species, while the two Starm. bacillaris strains generally behaved uniformly. Starm. bacillaris strains are differentiated by their preferential uptake of ammonium compared with amino acids that are poorly assimilated or even produced (alanine). Otherwise, the non-Saccharomyces yeast exhibits low activity through the acetaldehyde pathway, which triggers an important redistribution of fluxes through the central carbon metabolic network. In particular, the formation of metabolites deriving from the two glycolytic intermediates glyceraldehyde-3-phosphate and pyruvate is substantially increased during fermentations by Starm. bacillaris This knowledge will be useful to better control the fermentation process in mixed fermentation with Starm. bacillaris and S. cerevisiaeIMPORTANCE Mixed fermentations using a controlled inoculation of Starmerella bacillaris and Saccharomyces cerevisiae starter cultures represent a feasible way to modulate wine composition that takes advantage of both the phenotypic specificities of the non-Saccharomyces strain and the ability of S. cerevisiae to complete wine fermentation. However, according to the composition of grape juices, the consumption by Starm. bacillaris of nutrients, in particular of nitrogen sources, during the first stages of the process may result in depletions that further limit the growth of S. cerevisiae and lead to stuck or sluggish fermentations. Consequently, understanding the preferences of non-Saccharomyces yeasts for the nitrogen sources available in grape must together with their phenotypic specificities is essential for an efficient implementation of sequential wine fermentations with Starm. bacillaris and S. cerevisiae species. The results of our study demonstrate a clear preference for ammonium compared to amino acids for the non-Saccharomyces species. This finding underlines the importance of nitrogen sources, which modulate the functional characteristics of inoculated yeast strains to better control the fermentation process and product quality.
Project description:Starmerella bacillaris is a non-Saccharomyces yeast proposed for must fermentation together with Saccharomyces cerevisiae because of its high glycerol and moderate volatile acidity production. Furthermore, it was demonstrated that the same S. bacillaris strains that possess interesting technological properties exhibited antifungal activity against Botrytis cinerea, suggesting the release of this yeast in the vineyard. To obtain a positive effect during the following winemaking process, the maintenance of suitable concentrations of S. bacillaris is essential. Therefore, to obtain information on the survival of S. bacillaris, a small-scale field trial was performed. One week before the harvest, two different concentrations of S. bacillaris (106 and 107 cells/mL) were sprayed on Pinot grigio bunches, and the strain concentration was monitored by means of qPCR during the subsequent fermentation process. In addition, the combined effect of different winemaking techniques was evaluated, i.e., the vinification of juice, juice with marc and cryomaceration treatment. Results demonstrated that, under the tested conditions, S. bacillaris released in the vineyard remained viable for one week on grape bunches and increased glycerol content during the subsequent fermentation process. Different vinification protocols influenced cell concentrations. In particular, the cryomaceration treatment, due to the use of low temperature, supported S. bacillaris growth due to its cryotolerant aptitude. The collected data open new perspectives on the control of alcoholic fermentation, involving both vineyard and cellar management.
Project description:Mixed fermentation using Starmerella bacillaris and Saccharomyces cerevisiae has gained attention in recent years due to their ability to modulate the qualitative parameters of enological interest, such as the color intensity and stability of wine. In this study, three of the most important red Apulian varieties were fermented through two pure inoculations of Saccharomyces cerevisiae strains or the sequential inoculation of Saccharomyces cerevisiae after 48 h from Starmerella bacillaris. The evolution of anthocyanin profiles and chromatic characteristics were determined in the produced wines at draining off and after 18 months of bottle aging in order to assess the impact of the different fermentation protocols on the potential color stabilization and shelf-life. The chemical composition analysis showed titratable acidity and ethanol content exhibiting marked differences among wines after fermentation and aging. The 48 h inoculation delay produced wines with higher values of color intensity and color stability. This was ascribed to the increased presence of compounds, such as stable A-type vitisins and reddish/violet ethylidene-bridge flavonol-anthocyanin adducts, in the mixed fermentation. Our results proved that the sequential fermentation of Starmerella bacillaris and Saccharomyces cerevisiae could enhance the chromatic profile as well as the stability of the red wines, thus improving their organoleptic quality.
Project description:Gray mold is one of the most important diseases of grapevine in temperate climates. This plant pathogen affects plant growth and reduces wine quality. The use of yeasts as biocontrol agents to apply in the vineyard have been investigated in recent years as an alternative to agrochemicals. In this work, fermenting musts obtained from overripe grape berries, therefore more susceptible to infection by fungal pathogens such as Botrytis cinerea, were considered for the selection of yeasts carrying antifungal activity. Thirty-six isolates were identified as Starmerella bacillaris, a species recently proven to be of enological interest. Among them 14 different strains were studied and antifungal activity against B. cinerea was demonstrated, for the first time, to be present in S. bacillaris species. The production of volatile organic compounds (VOCs), tested in vitro, was found to be the main responsible of S. bacillaris antifungal effects. All the strains were able to reduce B. cinerea decay on wounded grape berries artificially inoculated with gray mold. The colonization level of wound was very high reaching, after 5 days, a concentration of 10(6) cells per ml of grape juice obtained after berry crushing. At this cell concentration S. bacillaris strains were used to ferment synthetic and natural musts. The sequential yeast inoculation, performed by adding S. cerevisiae 48 h after S. bacillaris, was needed to complete sugar consumption and determined a significant increase in glicerol content and a reduction of ethanol and acetic acid concentrations. The high wound colonization ability, found in this work, together with the propensity to colonize grape berry and the interesting enological traits possessed by the selected S. bacillaris strains allow the use of this yeast as biocontrol agent on vine and grape berries with possible positive effects on must fermentation, although the presence of S. cerevisiae is needed to complete the fermentation process. This work introduces new possibilities in wine yeast selection programs in order to identify innovative wine yeasts that are simultaneously antifungal agents in vineyards and alternative wine starters for grape must fermentation and open new perspective to a more integrated strategy for increasing wine quality.