Project description:Colletotrichum is a large genus of fungal phytopathogens that cause major economic losses on a wide range of crop plants throughout the world. These pathogenes vary widely in their host specificity and may have either broad or narrow host ranges. Here, we report the first complete genome of the alfalfa (Medicago sativa) pathogen, Colletotrichum destructivum, which will facilitate the genomic analysis of host adaptation and comparison with other members of the Destructivum clade. We identified a specific 1.2Mb region within chromosome 1 displaying all the hallmarks of fungal accessory chromosomes, which may have arisen through the integration of a mini-chromosome into a core chromosome and possibly linked with the pathogenicity of this fungus. We show this region is also a focus for chromosomal rearrangements, which may contribute to generating genetic diversity for adaptive evolution. Finally, we report infection by this fungus of the model legume, Medicago truncatula, providing a novel pathosystem for studying fungal-plant interactions.
Project description:Complete genome of the Medicago anthracnose fungus, Colletotrichum destructivum, reveals a mini-chromosome-like region within a core chromosome.
Project description:Colletotrichum graminicola causes maize anthracnose, an agronomically important disease with a worldwide distribution. We have identified a fungalysin metalloprotease (Cgfl) with a role in virulence. Transcriptional profiling experiments and live cell imaging show that Cgfl is specifically expressed during the biotrophic stage of infection. To determine whether Cgfl has a role in virulence, we obtained null mutants lacking Cgfl and performed pathogenicity and live microscopy assays. The appressorium morphology of the null mutants is normal, but they exhibit delayed development during the infection process on maize leaves and roots, showing that Cgfl has a role in virulence. In vitro chitinase activity assays of leaves infected with wild-type and null mutant strains show that, in the absence of Cgfl, maize leaves exhibit increased chitinase activity. Phylogenetic analyses show that Cgfl is highly conserved in fungi. Similarity searches, phylogenetic analysis and transcriptional profiling show that C. graminicola encodes two LysM domain-containing homologues of Ecp6, suggesting that this fungus employs both Cgfl-mediated and LysM protein-mediated strategies to control chitin signalling.
Project description:The fungal pathogen, Colletotrichum higginsianum, causes a disease called anthracnose on various cruciferous plants. Here, we characterized a Saccharomyces cerevisiae CDC25 ortholog in C. higginsianum, named ChCDC25 (CH063_04363). The ChCDC25 deletion mutants were defective in mycelial growth, conidiation, conidial germination, appressorial formation, and invasive hyphal growth on Arabidopsis leaves, resulting in loss of virulence. Furthermore, deletion of ChCDC25 led to increased sensitivity to cell wall stress and resulted in resistance to osmotic stress. Exogenous cyclic adenosine monophosphate (cAMP) and IBMX treatments were able to induce appressorial formation in the ChCDC25 mutants, but abnormal germ tubes were still formed. The results implied that ChCDC25 is involved in pathogenicity by regulation of cAMP signaling pathways in C. higginsianum. More importantly, we found that ChCDC25 may interact with Ras2 and affects Ras2 protein abundance in C. higginsianum. Taken together, ChCDC25 regulates infection-related morphogenesis and pathogenicity of C. higginsianum. This is the first report to reveal functions of a CDC25 ortholog in a hemibiotrophic phytopathogen.
Project description:The hemibiotrophic ascomycete fungus Colletotrichum gloeosporioides is the causal agent of anthracnose on numerous plants, and it causes considerable economic losses worldwide. Endocytosis is an essential cellular process in eukaryotic cells, but its roles in C. gloeosporioides remain unknown. In our study, we identified an endocytosis-related protein, CgEnd3, and knocked it out via polyethylene glycol (PEG)-mediated protoplast transformation. The lack of CgEnd3 resulted in severe defects in endocytosis. C. gloeosporioides infects its host through a specialized structure called appressorium, and ΔCgEnd3 showed deficient appressorium formation, melanization, turgor pressure accumulation, penetration ability of appressorium, cellophane membrane penetration, and pathogenicity. CgEnd3 also affected oxidant adaptation and the expression of core effectors during the early stage of infection. CgEnd3 contains one EF hand domain and four calcium ion-binding sites, and it is involved in calcium signaling. A lack of CgEnd3 changed the responses to cell-wall integrity agents and fungicide fludioxonil. However, CgEnd3 regulated appressorium formation and endocytosis in a calcium signaling-independent manner. Taken together, these results demonstrate that CgEnd3 plays pleiotropic roles in endocytosis, calcium signaling, cell-wall integrity, appressorium formation, penetration, and pathogenicity in C. gloeosporioides, and it suggests that CgEnd3 or endocytosis-related genes function as promising antifungal targets.
Project description:The ascomycete fungus Colletotrichum truncatum is a major phytopathogen with a broad host range which causes anthracnose disease of chilli. The genome sequencing of this fungus led to the discovery of functional categories of genes that may play important roles in fungal pathogenicity. However, the presence of gaps in C. truncatum draft assembly prevented the accurate prediction of repetitive elements, which are the key players to determine the genome architecture and drive evolution and host adaptation. We re-sequenced its genome using single-molecule real-time (SMRT) sequencing technology to obtain a refined assembly with lesser and smaller gaps and ambiguities. This enabled us to study its genome architecture by characterising the repetitive sequences like transposable elements (TEs) and simple sequence repeats (SSRs), which constituted 4.9 and 0.38% of the assembled genome, respectively. The comparative analysis among different Colletotrichum species revealed the extensive repeat rich regions, dominated by Gypsy superfamily of long terminal repeats (LTRs), and the differential composition of SSRs in their genomes. Our study revealed a recent burst of LTR amplification in C. truncatum, C. higginsianum, and C. scovillei. TEs in C. truncatum were significantly associated with secretome, effectors and genes in secondary metabolism clusters. Some of the TE families in C. truncatum showed cytosine to thymine transitions indicative of repeat-induced point mutation (RIP). C. orbiculare and C. graminicola showed strong signatures of RIP across their genomes and "two-speed" genomes with extensive AT-rich and gene-sparse regions. Comparative genomic analyses of Colletotrichum species provided an insight into the species-specific SSR profiles. The SSRs in the coding and non-coding regions of the genome revealed the composition of trinucleotide repeat motifs in exons with potential to alter the translated protein structure through amino acid repeats. This is the first genome-wide study of TEs and SSRs in C. truncatum and their comparative analysis with six other Colletotrichum species, which would serve as a useful resource for future research to get insights into the potential role of TEs in genome expansion and evolution of Colletotrichum fungi and for development of SSR-based molecular markers for population genomic studies.
Project description:BackgroundTea-oil tree (Camellia oleifera) is a unique edible-oil tree in China, and anthracnose occurs in wherever it is cultivated, causing great economic losses each year. We have previously identified the Ascomycete fungus Colletotrichum fructicola as the major pathogen of anthracnose in Ca. oleifera. The purpose of this study was to characterize the biological function of Snf1 protein, a key component of the AMPK (AMP-activated protein kinase) pathway, for the molecular pathogenic-mechanisms of C. fructicola.ResultsWe characterized CfSnf1 as the homolog of Saccharomyces cerevisiae Snf1. Targeted CfSNF1 gene deletion revealed that CfSnf1 is involved in the utilization of specific carbon sources, conidiation, and stress responses. We further found that the ΔCfSnf1 mutant was not pathogenic to Ca. oleifera, resulting from its defect in appressorium formation. In addition, we provided evidence showing crosstalk between the AMPK and the cAMP/PKA pathways for the first time in filamentous fungi.ConclusionThis study indicate that CfSnf1 is a critical factor in the development and pathogenicity of C. fructicola and, therefore, a potential fungicide target for anthracnose control.
Project description:Colletotrichum truncatum, a major fungal phytopathogen, causes the anthracnose disease on an economically important spice crop chilli (Capsicum annuum), resulting in huge economic losses in tropical and sub-tropical countries. It follows a subcuticular intramural infection strategy on chilli with a short, asymptomatic, endophytic phase, which contrasts with the intracellular hemibiotrophic lifestyle adopted by most of the Colletotrichum species. However, little is known about the molecular determinants and the mechanism of pathogenicity in this fungus. A high quality whole genome sequence and gene annotation based on transcriptome data of an Indian isolate of C. truncatum from chilli has been obtained. Analysis of the genome sequence revealed a rich repertoire of pathogenicity genes in C. truncatum encoding secreted proteins, effectors, plant cell wall degrading enzymes, secondary metabolism associated proteins, with potential roles in the host-specific infection strategy, placing it next only to the Fusarium species. The size of genome assembly, number of predicted genes and some of the functional categories were similar to other sequenced Colletotrichum species. The comparative genomic analyses with other species and related fungi identified some unique genes and certain highly expanded gene families of CAZymes, proteases and secondary metabolism associated genes in the genome of C. truncatum. The draft genome assembly and functional annotation of potential pathogenicity genes of C. truncatum provide an important genomic resource for understanding the biology and lifestyle of this important phytopathogen and will pave the way for designing efficient disease control regimens.
Project description:In previous studies, a sorghum mini core collection was scored over several years for response to Colletotrichum sublineola, Peronosclerospora sorghi, and Sporisorium reilianum, the causal agents of the disease anthracnose, downy mildew, and head smut, respectively. The screening results were combined with over 290,000 Single nucleotide polymorphic (SNP) loci from an updated version of a publicly available genotype by sequencing (GBS) dataset available for the mini core collection. GAPIT (Genome Association and Prediction Integrated Tool) R package was used to identify chromosomal locations that differ in disease response. When the top scoring SNPs were mapped to the most recent version of the published sorghum genome, in each case, a nearby and most often the closest annotated gene has precedence for a role in host defense.
Project description:Autophagy serves as a survival mechanism and plays important role in nutrient recycling under conditions of starvation, nutrient storage, ad differentiation of plant pathogenic fungi. However, autophagy-related genes have not been investigated in Colletotrichum scovillei, a causal agent of pepper fruit anthracnose disease. ATG8 is involved in autophagosome formation and is considered a marker of autophagy. Therefore, we generated an ATG8 deletion mutant, ΔCsatg8, via homologous recombination to determine the functional roles of CsATG8 in the development and virulence of C. scovillei. Compared with the wild-type, the deletion mutant ΔCsatg8 exhibited a severe reduction in conidiation. Conidia produced by ΔCsatg8 were defective in survival, conidial germination, and appressorium formation. Moreover, conidia of ΔCsatg8 showed reduced lipid amount and PTS1 selectivity. A virulence assay showed that anthracnose development on pepper fruits was reduced in ΔCsatg8. Taken together, our results suggest that CsATG8 plays various roles in conidium production and associated development, and virulence in C. scovillei.