Project description:In recent years, academic and industrial research has focused on using agro-waste for energy and new material production to promote sustainable development and lessen environmental issues. In this study, new nanocomposites based on polyvinyl alcohol (PVA)-Starch using two affordable agricultural wastes, Citrus limon peels (LP) and Citrullus colocynthis (Cc) shells and seeds powders with different concentrations (2, 5, 10, and 15 wt%) as bio-fillers were prepared. The nanocomposites were characterized by Dielectric Spectroscopy, Fourier-Transform Infrared (FTIR), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), and water swelling ratio. The antimicrobial properties of the nanocomposites against Escherichia coli, Staphylococcus aureus, and Candida albicans were examined to investigate the possibility of using such composites in biomedical applications. Additionally, the biocompatibility of the composites on human normal fibroblast cell lines (HFB4) was tested using MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay. The results demonstrate that the filler type and concentration strongly affect the film's properties. The permittivity ε', dielectric loss ε″ and conductivity σdc increased by increasing filler content but still in the insulators range that recommend such composites to be used in the insulation purposes. Both bio fillers control the water uptake, and the samples filled with LP were more water resistant. The polyvinyl alcohol/starch incorporated with 5 wt% LP and Cc have antimicrobial effects against all the tested microorganisms. Increasing the filler content has a negative impact on cell viability.
Project description:The plant Citrullus colocynthis, a member of the squash (Cucurbitaceae) family, has a long history in traditional medicine. Based on the ancient knowledge about the healing properties of herbal preparations, plant-derived small molecules, e.g., salicylic acid, or quinine, have been integral to modern drug discovery. Additionally, many plant families, such as Cucurbitaceae, are known as a rich source for cysteine-rich peptides, which are gaining importance as valuable pharmaceuticals. In this study, we characterized the C. colocynthis peptidome using chemical modification of cysteine residues, and mass shift analysis via matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry. We identified the presence of at least 23 cysteine-rich peptides in this plant, and eight novel peptides, named citcol-1 to -8, with a molecular weight between ~3650 and 4160 Da, were purified using reversed-phase high performance liquid chromatography (HPLC), and their amino acid sequences were determined by de novo assignment of b- and y-ion series of proteolytic peptide fragments. In silico analysis of citcol peptides revealed a high sequence similarity to trypsin inhibitor peptides from Cucumis sativus, Momordica cochinchinensis, Momordica macrophylla and Momordica sphaeroidea. Using genome/transcriptome mining it was possible to identify precursor sequences of this peptide family in related Cucurbitaceae species that cluster into trypsin inhibitor and antimicrobial peptides. Based on our analysis, the presence or absence of a crucial Arg/Lys residue at the putative P1 position may be used to classify these common cysteine-rich peptides by functional properties. Despite sequence homology and the common classification into the inhibitor cysteine knot family, these peptides appear to have diverse and additional bioactivities yet to be revealed.
Project description:Two new tetracyclic cucurbitane-type triterpene glycosides were isolated from an ethyl acetate extract of Citrullus colocynthis leaves together with four known cucurbitacins. Their structures were established on the basis of their spectroscopic data (mainly NMR and mass spectrometry). Evaluation of the in vitro cytotoxic activity of the isolated compounds against two human colon cancer cell lines (HT29 and Caco-2) and one normal rat intestine epithelial cell line (IEC6), revealed that one of the isolated compounds presented interesting specific cytotoxic activity towards colorectal cell lines.
Project description:Phenol is a hazardous organic chemical that introduced into the environment by industrial and pharmaceutical discharges. As a versatile option for phenol removal, adsorption would be viable if it accompanying with low cost adsorbents. This article described a natural, very cheap and local available adsorbent for phenol removal. Phenol showed a high affinity to Citrullus colocynthis waste ash which mainly composed of SiO2 (41.6%), Al2O3 (17.3%) and MgO (15.9%). Up to 70% of phenol adsorbed in the first 30 min of agitation. The phenol removal was increased by increasing adsorbent dose (0.5-10 g/L) and decreasing pH (2-12) and pollutant concentration (10-100 mg/L). The positive value of ∆H° in thermodynamic data (0.06) revealed that the process is endothermic. The high and positive value of ∆S° (13.01) and negative values of ∆G° (- 5.36 to - 7.28), showed a high affinity of phenol to the adsorbent and the spontaneous nature of the adsorption. Isotherm modelling revealed that the phenol molecules adsorbed in multilayer with the maximum adsorption capacity of 173.2 mg/g. The rate limiting step in the sorption process was chemisorption, based on the kinetic data.
Project description:Citrullus colocynthis is a very drought tolerant species, closely related to watermelon (C. lanatus var. lanatus), an economically important cucurbit crop. Drought is a threat to plant growth and development, and the discovery of drought inducible genes with various functions is of great importance. We used high throughput mRNA Illumina sequencing technology and bioinformatic strategies to analyze the C. colocynthis leaf transcriptome under drought treatment. Leaf samples at four different time points (0, 24, 36, or 48 hours of withholding water) were used for RNA extraction and Illumina sequencing. qRT-PCR of several drought responsive genes was performed to confirm the accuracy of RNA sequencing. Leaf transcriptome analysis provided the first glimpse of the drought responsive transcriptome of this unique cucurbit species. A total of 5038 full-length cDNAs were detected, with 2545 genes showing significant changes during drought stress. Principle component analysis indicated that drought was the major contributing factor regulating transcriptome changes. Up regulation of many transcription factors, stress signaling factors, detoxification genes, and genes involved in phytohormone signaling and citrulline metabolism occurred under the water deficit conditions. The C. colocynthis transcriptome data highlight the activation of a large set of drought related genes in this species, thus providing a valuable resource for future functional analysis of candidate genes in defense of drought stress.
Project description:The by-product of citrus juice processing is a huge source of bioactive compounds, especially polymethoxyflavones (PMFs) and fibers. In this study, a method for the separation and purification of PMFs from citrus pomace was established based on citrus nanoporous carbon (CNPC) enrichment. Different biomass porous carbons were synthesized, their adsorption/desorption characteristics were evaluated, and the CNPCs from the peel of Citrus tangerina Tanaka were found to be best for the enrichment of PMFs from the crude extracts of citrus pomace. Using this method, six PMF compounds including low-abundant PMFs in citrus fruits such as 5,6,7,4'-tetramethoxyflavone and 5-hydroxy-6,7,8,3',4'-pentamethoxyflavone can be simultaneously obtained, and the purities of these compounds were all higher than 95%, with the highest purity of nobiletin reaching 99.96%. Therefore, CNPCs have a great potential for the separation and purification of PMFs in citrus processing wastes, potentially improving the added value of citrus wastes. We also provide a method reference for disposing of citrus pomace in the future.
Project description:Citrullus colocynthis L. is one of the worldwide famous traditionally medicinal plants and widely applied in watermelon breeding for its multiple resistances. The complete nucleotide sequence of desert watermelon (Citrullus colocythis L.) chloroplast genome has been determined in this study. The genome was composed of 157,147 bp containing a pair of inverted repeats (IRs) of 26,149 bp, which was separated by a large single-copy region of 86,851 bp and a small single-copy region of 17,998 bp. A total of 123 genes were predicted including 86 protein-coding genes, eight rRNA genes and 29 tRNA genes. Phylogenetic analysis revealed that C. colocynthis were closely related to other two species in the genus Citrullus. The complete chloroplast genome of C. colocynthis would provide some significant information for Cucurbitaceae evolutionary and genomic studies.