Project description:The catalytic performance of nanoparticles is primarily determined by the precise nature of the surface and near-surface atomic configurations, which can be tailored by post-synthesis annealing effectively and straightforwardly. Understanding the complete dynamic response of surface structure and chemistry to thermal treatments at the atomic scale is imperative for the rational design of catalyst nanoparticles. Here, by tracking the same individual Pt3Co nanoparticles during in situ annealing in a scanning transmission electron microscope, we directly discern five distinct stages of surface elemental rearrangements in Pt3Co nanoparticles at the atomic scale: initial random (alloy) elemental distribution; surface platinum-skin-layer formation; nucleation of structurally ordered domains; ordered framework development and, finally, initiation of amorphization. Furthermore, a comprehensive interplay among phase evolution, surface faceting and elemental inter-diffusion is revealed, and supported by atomistic simulations. This work may pave the way towards designing catalysts through post-synthesis annealing for optimized catalytic performance.
Project description:Low-temperature epitaxial growth of AlN ultrathin films was realized by atomic layer deposition (ALD) together with the layer-by-layer, in-situ atomic layer annealing (ALA), instead of a high growth temperature which is needed in conventional epitaxial growth techniques. By applying the ALA with the Ar plasma treatment in each ALD cycle, the AlN thin film was converted dramatically from the amorphous phase to a single-crystalline epitaxial layer, at a low deposition temperature of 300 °C. The energy transferred from plasma not only provides the crystallization energy but also enhances the migration of adatoms and the removal of ligands, which significantly improve the crystallinity of the epitaxial layer. The X-ray diffraction reveals that the full width at half-maximum of the AlN (0002) rocking curve is only 144 arcsec in the AlN ultrathin epilayer with a thickness of only a few tens of nm. The high-resolution transmission electron microscopy also indicates the high-quality single-crystal hexagonal phase of the AlN epitaxial layer on the sapphire substrate. The result opens a window for further extension of the ALD applications from amorphous thin films to the high-quality low-temperature atomic layer epitaxy, which can be exploited in a variety of fields and applications in the near future.
Project description:Lead halide perovskites have emerged as successful optoelectronic materials with high photovoltaic power conversion efficiencies and low material cost. However, substantial challenges remain in the scalability, stability and fundamental understanding of the materials. Here we present the application of radiative thermal annealing, an easily scalable processing method for synthesizing formamidinium lead iodide (FAPbI3) perovskite solar absorbers. Devices fabricated from films formed via radiative thermal annealing have equivalent efficiencies to those annealed using a conventional hotplate. By coupling results from in situ X-ray diffraction using a radiative thermal annealing system with device performances, we mapped the processing phase space of FAPbI3 and corresponding device efficiencies. Our map of processing-structure-performance space suggests the commonly used FAPbI3 annealing time, 10 min at 170 °C, can be significantly reduced to 40 s at 170 °C without affecting the photovoltaic performance. The Johnson-Mehl-Avrami model was used to determine the activation energy for decomposition of FAPbI3 into PbI2.
Project description:Perovskite materials are fascinating candidates for the next-generation solar devices. With long charge carrier lifetime, metal-halide perovskites are known to be good candidates for low-light harvesting. To match the irradiance spectra of indoor light, we configured a triple-cation perovskite material with appropriate content of bromide and chloride (FA0.45MA0.49Cs0.06Pb(I0.62Br0.32Cl0.06)3) to achieve an optimum band gap (Eg) of [Formula: see text]1.80 eV. With low photon flux at indoor condition, minimal recombination is highly desirable. To achieve such goal, we, for the first time, combined dual usage of antisolvent deposition and vacuum thermal annealing, namely VTA, to fabricate a high-quality perovskite film. VTA leads to compact, dense, and hard morphology while suppressing trap states at surfaces and grain boundaries, which are key culprits for exciton losses. With low-cost carbon electrode architecture, VTA devices exhibited average power conversion efficiency (PCE) of 27.7 ± 2.7% with peak PCE of 32.0% (Shockley-Queisser limit of 50-60%) and average open-circuit voltage (Voc) of 0.93 ± 0.02 V with peak Voc of 0.96 V, significantly more than those of control and the vacuum treatment prior to heat.
Project description:To compare the inherent methanol steam reforming properties of intermetallic compounds and a corresponding intermetallic compound-oxide interface, we selected the Cu-In system as a model to correlate the stability limits, self-activation and redox activation properties with the catalytic performance. Three distinct intermetallic Cu-In compounds - Cu7In3, Cu2In and Cu11In9 - were studied both in an untreated and redox-activated state resulting from alternating oxidation-reduction cycles. The stability of all studied intermetallic compounds during methanol steam reforming (MSR) operation is essentially independent of the initial stoichiometry and all accordingly resist substantial structural changes. The inherent activity under batch MSR conditions is highest for Cu2In, corroborating the results of a Cu2In/In2O3 sample accessed through reactive metal-support interaction. Under flow MSR operation, Cu7In3 displays considerable deactivation, while Cu2In and Cu11In9 feature stable performance at simultaneously high CO2 selectivity. The missing significant self-activation is most evident in the operando thermogravimetric experiments, where no oxidation is detected for any of the intermetallic compounds. In situ X-ray diffraction allowed us to monitor the partial decomposition and redox activation of the Cu-In intermetallic compounds into Cu0.9In0.1/In2O3 (from Cu7In3), Cu7In3/In2O3 (from Cu2In) and Cu7In3/Cu0.9In0.1/In2O3 (from Cu11In9) interfaces with superior MSR performance compared to the untreated samples. Although the catalytic profiles appear surprisingly similar, the latter interface with the highest indium content exhibits the least deactivation, which we explain by formation of stabilizing In2O3 patches under MSR conditions.
Project description:Understanding the mechanism of nanoparticle formation during synthesis is a key prerequisite for the rational design and engineering of desirable materials properties, yet remains elusive due to the difficulty of studying structures at the nanoscale under real conditions. Here, the first comprehensive structural description of the formation of a nanoparticle, yttria-stabilized zirconia (YSZ), all the way from its ionic constituents in solution to the final crystal, is presented. The transformation is a complicated multi-step sequence of atomic reorganizations as the material follows the reaction pathway towards the equilibrium product. Prior to nanoparticle nucleation, reagents reorganize into polymeric species whose structure is incompatible with the final product. Instead of direct nucleation of clusters into the final product lattice, a highly disordered intermediate precipitate forms with a local bonding environment similar to the product yet lacking the correct topology. During maturation, bond reforming occurs by nucleation and growth of distinct domains within the amorphous intermediary. The present study moves beyond kinetic modeling by providing detailed real-time structural insight, and it is demonstrated that YSZ nanoparticle formation and growth is a more complex chemical process than accounted for in conventional models. This level of mechanistic understanding of the nanoparticle formation is the first step towards more rational control over nanoparticle synthesis through control of both solution precursors and reaction intermediaries.
Project description:Mg3-xGa1+xIr (x = 0.05) was synthesized by direct reaction of the elements in welded tantalum containers at 1200 °C and subsequent annealing at 500 °C for 30 days. Its crystal structure represents a new prototype and was determined by single-crystal technique as follows: space group P63/mcm, Pearson symbol hP90, Z = 18, a = 14.4970(3) Å, c = 8.8638(3) Å. The composition and atomic arrangement in Mg3GaIr do not follow the 8-N rule due to the lack of valence electrons. Based on chemical bonding analysis in positional space, it was shown that the title compound has a polycationic-polyanionic organization. In comparison with other known intermetallic substances with this kind of bonding pattern, both the polyanion and the polyanion are remarkably complex. Mg3-xGa1+xIr is an example of how the general organization of intermetallic substances (e.g., formation of polyanions and polycations) can be understood by extending the principles of 8-N compounds to electron-deficient materials with multi-atomic bonding.
Project description:In this study, the effect of 3-2-(2-aminoethylamino) ethylamino propyl trimethoxysilane (ETAS) modification and post rapid thermal annealing (RTA) treatment on the adhesion of electroless plated nickel-phosphorus (ELP Ni-P) film on polyvinyl alcohol-capped palladium nanoclusters (PVA-Pd) catalyzed silicon wafers is systematically investigated. Characterized by pull-off adhesion, atomic force microscopy, X-ray spectroscopy and water contact angle, a time-dependent, three-staged ETAS grafting mechanism including islandish grafting, a self-assembly monolayer (SAM) and multi-layer grafting is proposed and this mechanism is well correlated to the pull-off adhesion of ELP Ni-P film. In the absence of RTA, the highest ELP Ni-P film adhesion occurs when ETAS modification approaches SAM, where insufficient or multi-layer ETAS grafting fails to provide satisfactory results. On the other hand, if RTA is applied, the best ELP Ni-P film adhesion happens when ETAS modification is islandish owing to the formation of nickel silicide, where SAM or multi-layer ETAS modification cannot provide satisfactory adhesion because the interaction between ETAS and PVA-Pd has been sabotaged during RTA. Evidenced by microstructural images, we also confirmed that ETAS can act as an efficient barrier layer for nickel diffusion to bulk silicon.
Project description:Liquid metals, such as Ga and eutectic Ga-In, have been extensively studied for various applications, including flexible and wearable devices. For applying liquid metal to electronic devices, interconnection with the various metal electrodes currently in use, and verifying their mechanical reliability are essential. Here, detailed investigations of the formation and growth of intermetallic compounds (IMCs) during the reactions between liquid Ga and solid nickel were conducted. Ga and Ni were reacted at 250, 300, and 350 °C for 10-240 min. The IMC double layer observed after the reactions contained a Ga7Ni3 bottom layer formed during the reactions, and a GaxNi top layer (with 89-95 at.% of Ga) precipitated during cooling. Numerous empty channels exist between the rod-type Ga7Ni3 IMCs. Ga7Ni3 growth occurred only in the vertical direction, without lateral coarsening and merging between the rods. The time exponents were measured at 1.1-1.5, implying that the reaction kinetics were near-interface reaction-controlled. The activation energy for Ga7Ni3 growth was determined as 49.1 kJ/mol. The experimental results of the Ga-Ni reaction study are expected to provide important information for incorporating liquid metals into electronic devices in the future.
Project description:The phase and local environment, neighbouring atoms and coordination numbers (CN), for an Al-Cu-Fe multilayer were studied during heating (to 800 °C) and cooling (to room temperature) processes using in-situ X-Ray diffraction (XRD) and in-situ X-ray absorption spectroscopy (XAS) techniques to investigate the formation of Al-Cu-Fe quasicrystals (QCs). In-situ XRD clarified the transition of the ω-Al7Cu2Fe phase to a liquid state at the high temperature which transformed into the QC phase during cooling. The in-situ XAS showed a relatively small shift in distance between Cu-Al and Fe-Al during the phase evolution from RT to 700 °C. The distance between Cu-Cu, however, showed a significant increase from ω-phase at 700 °C to the liquid state at 800 °C, and this distance was maintained after QC formation. Furthermore, the CN of Fe-Al was changed to N = 9 during cooling. Through our observations of changes in CN, atomic distances and the atomic environment, we propose the local structural ordering of the quasicrystalline phase originated from a liquid state via ω-phase. In this study, we give a clear picture of the atomic environment from the crystalline to the quasicrystalline phase during the phase transitions, which provides a better understanding of the synthesis of functional QC nanomaterials.