Project description:Introduction Pulmonary embolism (PE) is a frequent complication in COVID-19. However, the influence of PE on the prognosis of COVID-19 remains unclear as previous studies were affected by misclassification bias. Therefore, we evaluated a cohort of COVID-19 patients whom all underwent systematic screening for PE (thereby avoiding misclassification) and compared clinical outcomes between patients with and without PE. Materials and methods We included all COVID-19 patients who were admitted through the ED between April 2020 and February 2021. All patients underwent systematic work-up for PE in the ED using the YEARS-algorithm. The primary outcome was a composite of in-hospital mortality and ICU admission. We also evaluated long-term outcomes including PE occurrence within 90 days after discharge and one-year all-cause mortality. Results 637 ED patients were included in the analysis. PE was diagnosed in 46 of them (7.2%). The occurrence of the primary outcome did not differ between patients with PE and those without (28.3% vs. 26.9%, p = 0.68). The overall rate of PE diagnosed in-hospital (after an initial negative PE screening in the ED) and in the first 90 days after discharge was 3.9% and 1.2% respectively. One-year all-cause mortality was similar between patients with and without PE (26.1% vs. 24.4%, p = 0.83). Conclusions In a cohort of COVID-19 patients who underwent systematic PE screening in the ED, we found no differences in mortality rate and ICU admissions between patients with and without PE. This may indicate that proactive PE screening, and thus timely diagnosis and treatment of PE, may limit further clinical deterioration and associated mortality in COVID-19 patients.
Project description:AbstractBased on association studies on amounts of alcohol consumed and cortical and subcortical structural shrinkage, we investigated the effect of chronic alcohol consumption on white matter pathways using probabilistic tractography.Twenty-three alcohol-dependent men (with an average sobriety of 13.1 months) from a mental health hospital and 22 age-matched male healthy social drinkers underwent 3T magnetic resonance imaging. Eighteen major white matter pathways were reconstructed using the TRActs Constrained by UnderLying Anatomy tool (provided by the FreeSurfer). The hippocampal volumes were estimated using an automated procedure. The lifetime drinking history interview, Alcohol Use Disorder Identification Test, Brief Michigan Alcoholism Screening Test, and pack-years of smoking were also evaluated.Analysis of covariance controlling for age, cigarette smoking, total motion index indicated that there was no definite difference of diffusion parameters between the 2 groups after multiple comparison correction. As hippocampal volume decreased, the fractional anisotropy of the right cingulum-angular bundle decreased. Additionally, the axial diffusivity of right cingulum-angular bundle was positively correlated with the alcohol abstinence period.The results imply resilience of white matter in patients with alcohol dependence. Additional longitudinal studies with multimodal methods and neuropsychological tests may improve our findings of the changes in white matter pathways in patients with alcohol dependence.
Project description:Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 is an ongoing viral pandemic marked by increased risk of thrombotic events. However, the role of platelets in the elevated observed thrombotic risk in COVID-19 and utility of antiplatelet agents in attenuating thrombosis is unknown. We aimed to determine if the antiplatelet effect of aspirin may mitigate risk of myocardial infarction, cerebrovascular accident, and venous thromboembolism in COVID-19. We evaluated 22,072 symptomatic patients tested for COVID-19. Propensity-matched analyses were performed to determine if treatment with aspirin or nonsteroidal anti-inflammatory drugs (NSAIDs) affected thrombotic outcomes in COVID-19. Neither aspirin nor NSAIDs affected mortality in COVID-19. Thus, aspirin does not appear to prevent thrombosis and death in COVID-19. The mechanisms of thrombosis in COVID-19, therefore, appear distinct and the role of platelets as direct mediators of SARS-CoV-2-mediated thrombosis warrants further investigation.
Project description:We investigate the time-varying effect of particulate matter (PM) on COVID-19 deaths in Italian municipalities. We find that the lagged moving averages of PM2.5 and PM10 are significantly related to higher excess deceases during the first wave of the disease, after controlling, among other factors, for time-varying mobility, regional and municipality fixed effects, the nonlinear contagion trend, and lockdown effects. Our findings are confirmed after accounting for potential endogeneity, heterogeneous pandemic dynamics, and spatial correlation through pooled and fixed-effect instrumental variable estimates using municipal and provincial data. In addition, we decompose the overall PM effect and find that both pre-COVID long-term exposure and short-term variation during the pandemic matter. In terms of magnitude, we observe that a 1 μg/m3 increase in PM2.5 can lead to up to 20% more deaths in Italian municipalities, which is equivalent to a 5.9% increase in mortality rate.
Project description:BackgroundAlthough chemotherapy and radiation treatment have contributed to increased survivorship, treatment-induced brain injury has been a concern when examining long-term intellectual outcomes of survivors. Specifically, disruption of brain white matter integrity and its relationship to intellectual outcomes in adult survivors of childhood brain tumors needs to be better understood.MethodsFifty-four participants underwent diffusion tensor imaging in addition to structural MRI and an intelligence test (IQ). Voxel-wise group comparisons of fractional anisotropy calculated from DTI data were performed using Tract Based Spatial Statistics (TBSS) on 27 survivors (14 treated with radiation with and without chemotherapy and 13 treated without radiation treatment on average over 13 years since diagnosis) and 27 healthy comparison participants. Whole brain white matter fractional anisotropy (FA) differences were explored between each group. The relationships between IQ and FA in the regions where statistically lower FA values were found in survivors were examined, as well as the role of cumulative neurological factors.ResultsThe group of survivors treated with radiation with and without chemotherapy had lower IQ relative to the group of survivors without radiation treatment and the healthy comparison group. TBSS identified white matter regions with significantly different mean fractional anisotropy between the three different groups. A lower level of white matter integrity was found in the radiation with or without chemotherapy treated group compared to the group without radiation treatment and also the healthy control group. The group without radiation treatment had a lower mean FA relative to healthy controls. The white matter disruption of the radiation with or without chemotherapy treated survivors was positively correlated with IQ and cumulative neurological factors.ConclusionsLower long-term intellectual outcomes of childhood brain tumor survivors are associated with lower white matter integrity. Radiation and adjunct chemotherapy treatment may play a role in greater white matter disruption. The relationships between white matter integrity and IQ, as well as cumulative neurological risk factors exist in young adult survivors of childhood brain tumors.
Project description:With the onset of the coronavirus pandemic, it has become clear that patients with diabetes are at risk for more severe and fatal COVID-19. Type 2 diabetes mellitus (T2D) is a major risk factor for adverse COVID-19 outcomes. The goal of study was to assess the characteristics and outcomes of hospitalized patients with COVID-19 with or without T2D in the hospital and at 10-month follow-up (FU).MethodsA total of 2486 hospitalized patients in the first wave of COVID-19 were analyzed according to the absence/presence of T2D, with 2082 (84.1%) patients in the control COVID-19 group and 381 (15.5%) in the T2D group. Twenty-three patients had other types of diabetes and were therefore excluded from the study. In-hospital mortality and cardiovascular endpoints (myocardial infarction, stroke, cardiovascular deaths and hospitalizations and composite endpoints) at the 10-month follow-up were analyzed. To remove bias in patients' characteristics disproportion, Propensity Score Matching (PSM) was used for hospital and follow-up endpoints.ResultsHospital mortality was considerably greater in T2D than in the control COVID-19 group (13.89% vs. 4.89%, p < 0.0001), and the difference remained after PSM (p < 0.0001). Higher glucose-level T2D patients had a higher mortality rate (p = 0.018). The most significant predictors of hospital death in T2D patients were a high CRP, glucose, neutrophils count, and Charlson Comorbidity Index. The follow-up of patients over 10 months showed a non-significant increase for all endpoints in the T2D group (p > 0.05), and significant increase in stroke (p < 0.042). After the PSM, the difference decreased in stroke (p = 0.090), but became significant in cardiovascular hospitalizations (p = 0.023).ConclusionIn T2D patients with COVID-19, an increase in hospital mortality, stroke and cardiovascular hospitalizations rates in the follow-up was observed.
Project description:AimsNeonatal hypoxia-ischemia (H/I) results in gray and white matter injury, characterized by neuronal loss, failure of neural network formation, retarded myelin formation, and abnormal accumulation of oligodendrocyte progenitor cells (OPCs). These changes lead to severe neurological deficits and mortality. Sublethal hypoxic preconditioning (HPC) can protect the developing brain against H/I. However, limited evidence is available concerning its effect on white matter injury.MethodsIn this study, P6 neonatal Sprague-Dawley rats were subjected to normoxic (21% O2 ) or HPC (7.8% O2 ) for 3 hours followed 24 hours later by H/I brain injury. Neurological deficits were assessed by gait, righting reflex, foot fault, and Morris water maze tests. Compound action potential of the corpus callosum was recorded 35 days after surgery, and the correlation between axon myelination and neurological function was determined.ResultsHypoxic preconditioning significantly attenuated H/I brain injury at 7 days and remarkably improved both sensorimotor and cognitive functional performances up to 35 days after H/I. HPC-afforded improvement in long-term neurological outcomes was attributable, at least in part, to restoration of the differentiation and maturation capacity in oligodendrocyte progenitor cells, amelioration of microglia/macrophage activation and neuroinflammation, and continuation of brain development after H/I.ConclusionsHypoxic preconditioning restores white matter repair, development, and functional integrity in developing brain after H/I brain injury.
Project description:ObjectiveNovel coronavirus disease 2019 (COVID-19) has been found to be associated with encephalopathy and brain imaging abnormalities. The identification of incident white matter lesions, known to be associated with cerebral microcirculatory failure and cerebrovascular disease, in COVID-19 patients is of clinical and scientific interest. We performed a meta-analysis to investigate the incidence of white matter lesions (WMLs) in hospitalized COVID-19 patients.MethodsPubMed, EMBASE, and the Cochrane Library were searched for studies on brain imaging abnormalities in hospitalized COVID-19 patients. The terms used included "white matter lesions," "white matter hyperintensity," "COVID-19," "coronavirus," and "SARS-CoV-2." A random-effects meta-analysis was conducted to obtain a pooled estimate of WML prevalence in hospitalized COVID-19 patients.ResultsA total of 4 eligible studies involving 362 patients (144 with WMLs and 218 without) were included in the meta-analysis. We found the pooled estimate of WML prevalence to be 20% (ES 0.20; 95% CI 0.00-0.54; p = .03).ConclusionsThe estimated pooled prevalence rate of WMLs was approximately 20% in hospitalized COVID-19 patients, albeit lower than the crude prevalence rate (39.8%).
Project description:COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still a pandemic with high mortality and morbidity rates. Clinical manifestation is widely variable, including asymptomatic or mild respiratory tract illness to severe pneumonia and death. Myocardial injury is a significant pathogenic feature of COVID-19 and it is associated with worse in-hospital outcomes, mainly due to a higher number of hospital readmissions, with over 50% mortality. These findings suggest that myocardial injury would identify COVID-19 patients with higher risk during active infection and mid-term follow-up. Potential contributors responsible for myocardial damage are myocarditis, vasculitis, acute inflammation, type 1 and type 2 myocardial infarction. However, there are few data about cardiac sequelae and its long-term consequences. Thus, the optimal screening tool for residual cardiac sequelae, clinical follow-up, and the benefits of a specific cardiovascular therapy during the convalescent phase remains unknown. This mini-review explores the different mechanisms of myocardial injury related to COVID-19 and its short and long-term implications.
Project description:The coronavirus disease 2019 (COVID-19) pandemic has resulted in millions of patients infected worldwide and indirectly affecting even more individuals through disruption of daily living. Long-term adverse outcomes have been reported with similar diseases from other coronaviruses, namely Middle East Respiratory Syndrome (MERS) and Severe Acute Respiratory Syndrome (SARS). Emerging evidence suggests that COVID-19 adversely affects different systems in the human body. This review summarizes the current evidence on the short-term adverse health outcomes and assesses the risk of potential long-term adverse outcomes of COVID-19. Major adverse outcomes were found to affect different body systems: immune system (including but not limited to Guillain-Barré syndrome and paediatric inflammatory multisystem syndrome), respiratory system (lung fibrosis and pulmonary thromboembolism), cardiovascular system (cardiomyopathy and coagulopathy), neurological system (sensory dysfunction and stroke), as well as cutaneous and gastrointestinal manifestations, impaired hepatic and renal function. Mental health in patients with COVID-19 was also found to be adversely affected. The burden of caring for COVID-19 survivors is likely to be huge. Therefore, it is important for policy makers to develop comprehensive strategies in providing resources and capacity in the healthcare system. Future epidemiological studies are needed to further investigate the long-term impact on COVID-19 survivors.