Project description:Prior exposure to microenvironmental signals could fundamentally change the response of macrophages to subsequent stimuli. It is believed that T helper-2 (Th2)-cell-type cytokine interleukin-4 (IL-4) and Toll-like receptor (TLR) ligand-activated transcriptional programs mutually antagonize each other, and no remarkable convergence has been identified between them. In contrast, here, we show that IL-4-polarized macrophages established a hyperinflammatory gene expression program upon lipopolysaccharide (LPS) exposure. This phenomenon, which we termed extended synergy, was supported by IL-4-directed epigenomic remodeling, LPS-activated NF-κB-p65 cistrome expansion, and increased enhancer activity. The EGR2 transcription factor contributed to the extended synergy in a macrophage-subtype-specific manner. Consequently, the previously alternatively polarized macrophages produced increased amounts of immune-modulatory factors both in vitro and in vivo in a murine Th2 cell-type airway inflammation model upon LPS exposure. Our findings establish that IL-4-induced epigenetic reprogramming is responsible for the development of inflammatory hyperresponsiveness to TLR activation and contributes to lung pathologies.
Project description:Aberrant activation of macrophages in arterial walls by oxidized lipoproteins can lead to atherosclerosis. Oxidized lipoproteins convert macrophages to foam cells through lipid uptake and TLR signaling. To investigate the relative contributions of lipid uptake and TLR signaling in foam cell formation, we established an in vitro assay using liposomes of defined lipid compositions. We found that TLRs signaling through Toll/IL-1R domain-containing adapter inducing IFN-? promoted foam cell formation by inducing both NF-?B signaling and type I IFN production, whereas TLRs that do not induce IFN, like TLR2, did not enhance foam cell formation. Addition of IFN-? to TLR2 activator promoted robust foam cell formation. TLR signaling further required peroxisome proliferator-activated receptor ?, as inhibition of peroxisome proliferator-activated receptor ? blocked foam cell formation. We then investigated the ability of endogenous microparticles (MP) to contribute to foam cell formation. We found that lipid-containing MP promoted foam cell formation, which was enhanced by TLR stimulation or IFN-?. These MP also stimulated foam cell formation in a human skin model. However, these MP suppressed TNF-? production and T cell activation, showing that foam cell formation can occur by immunosuppressive MP. Taken together, the data reveal novel signaling requirements for foam cell formation and suggest that uptake of distinct types of MP in the context of activation of multiple distinct TLR can induce foam cell formation.
Project description:Ribosomal silencing factor S (RsfS) is a conserved protein that plays a role in the mechanisms of ribosome shutdown and cell survival during starvation. Recent studies demonstrated the involvement of RsfS in the biogenesis of the large ribosomal subunit. RsfS binds to the uL14 ribosomal protein on the large ribosomal subunit and prevents its association with the small subunit. Here, we estimated the contribution of RsfS amino acid side chains at the interface between RsfS and uL14 to RsfS anti-association function in Staphylococcus aureus through in vitro experiments: centrifugation in sucrose gradient profiles and an S. aureus cell-free system assay. The detected critical Y98 amino acid on the RsfS surface might become a new potential target for pharmacological drug development and treatment of S. aureus infections.
Project description:Several diterpenoids isolated from terrestrial and marine environments have been identified as important anti-inflammatory agents. Although considerable progress has been made in the area of anti-inflammatory treatment, the search for more effective and safer compounds is a very active field of research. In this study we investigated the anti-inflammatory effects of a known pseudopterane diterpene (referred here as compound 1) isolated from the octocoral Pseudopterogorgia acerosa on the tumor necrosis factor- alpha (TNF-α) and TLRs- induced response in macrophages. Compound 1 inhibited the expression and secretion of the inflammatory mediators TNF-α, interleukin (IL)-6, IL-1β, nitric oxide (NO), interferon gamma-induced protein 10 (IP-10), ciclooxygenase (COX)-2, inducible nitric oxide synthase (iNOS) and monocyte chemoattractant protein-1 (MCP-1) induced by LPS in primary murine macrophages. This effect was associated with the inhibition of IκBα degradation and subsequent activation of NFκB. Compound 1 also inhibited the expression of the co-stimulatory molecules CD80 and CD86, which is a hallmark of macrophage activation and consequent initiation of an adaptive immune response. The anti-inflammatory effect was not exclusive to LPS because compound 1 also inhibited the response of macrophages to TNF-α and TLR2 and TLR3 ligands. Taken together, these results indicate that compound 1 is an anti-inflammatory molecule, which modulates a variety of processes occurring in macrophage activation.
Project description:Staphylococcus aureus (S. aureus) is one of the most common causative agents of mammary gland infection and mastitis, but the specific role of S. aureus-derived extracellular vesicles (SaEVs) in mastitis has been poorly studied to date. Here, we aimed to investigate the response of bovine monocyte-derived macrophages (boMdM) to SaEVs of the genotype B (GTB) mastitis-related strain M5512B. Specifically, we evaluated the effects on the actin cytoskeleton, gene expression, and the SaEV proteomic cargo. Furthermore, we assessed to what extent the cellular and molecular response of boMdM to SaEVs differed from peripheral mononuclear blood cells (PBMCs) used for in vitro derivation of the former. We observed that SaEVs induced morphological changes in boMdM, leading to a pro-inflammatory and pyroptosis-related increased gene expression. Additionally, our study revealed that boMdM and PBMCs exhibited stimulus-specific differing responses. The proteomic analysis of SaEVs identified clusters of proteins related to virulence and antibiotic resistance, supporting the theory that S. aureus might use EVs to evade host defences and colonize the mammary gland. Our results bring new insights into how SaEVs might impact the host during an S. aureus infection, which can be useful for future S. aureus vaccine development.
Project description:Macrophages are important for the first line of defense against microbial pathogens. Integrin CD11b, which is encoded by Itgam, is expressed on the surface of macrophages and has been implicated in adhesion, migration, and cell-mediated cytotoxicity. However, the functional impact of CD11b on the inflammatory responses of macrophages upon microbial infection remains unclear. Here, we show that CD11b deficiency resulted in increased susceptibility to sepsis induced by methicillin-resistant Staphylococcus aureus (MRSA) infection by enhancing the pro-inflammatory activities of macrophages. Upon infection with MRSA, the mortality of Itgam knockout mice was significantly higher than that of control mice, which is associated with increased production of TNF-α and IL-6. In response to MRSA, both bone marrow-derived macrophages and peritoneal macrophages lacking CD11b produced elevated amounts of pro-inflammatory cytokines and nitric oxide. Moreover, CD11b deficiency upregulated IL-4-induced expression of anti-inflammatory mediators such as IL-10 and arginase-1, and an immunomodulatory function of macrophages to restrain T cell activation. Biochemical and confocal microscopy data revealed that CD11b deficiency augmented the activation of NF-κB signaling and phosphorylation of Akt, which promotes the functional activation of macrophages with pro-inflammatory and immunoregulatory phenotypes, respectively. Overall, our experimental evidence suggests that CD11b is a critical modulator of macrophages in response to microbial infection.
Project description:Blood samples from multiple sites are collected in multicenter trials, and frequently shipped to centralized laboratories for processing and comparable experimental evaluation. It is therefore of crucial interest to assess the preservation of immune cell functions after overnight shipment of whole blood. Here we evaluated the ability of pDCs, mDCs and monocytes to respond to TLR ligands at multiple timepoints following venipuncture as compared to immediate processing. Our results demonstrate a profound impairment of APC function, in particular of IFN-alpha production of pDCs, if whole blood was processed later than 6 h after venipuncture. Overnight shipment or extended rest of whole blood before processing therefore severely compromises the ability of APCs to respond to TLR ligands, and this has to be taken into consideration when designing multicenter trials.
Project description:Pneumonia is the leading cause of hospitalization worldwide. Besides viruses, bacterial co-infections dramatically exacerbate infection. In general, surfactant protein-A (SP-A) represents a first line of immune defense. In this study, we analyzed whether influenza A virus (IAV) and/or Staphylococcus aureus (S. aureus) infections affect SP-A expression. To closely reflect the situation in the lung, we used a human alveolus-on-a-chip model and a murine pneumonia model. Our results show that S. aureus can reduce extracellular levels of SP-A, most likely attributed to bacterial proteases. Mono-epithelial cell culture experiments reveal that the expression of SP-A is not directly affected by IAV or S. aureus. Yet, the mRNA expression of SP-A is strongly down-regulated by TNF-α, which is highly produced by professional phagocytes in response to bacterial infection. By using the human alveolus-on-a-chip model, we show that the down-regulation of SP-A is strongly dependent on macrophages. In a murine model of pneumonia, we can confirm that S. aureus decreases SP-A levels in vivo. These findings indicate that (I) complex interactions of epithelial and immune cells induce down-regulation of SP-A expression and (II) bacterial mono- and super-infections reduce SP-A expression in the lung, which might contribute to a severe outcome of bacterial pneumonia.
Project description:Mef2 transcription factors comprise a family of four different isoforms that regulate a number of processes including neuronal and muscle development. While roles for Mef2C and Mef2D have been described in B-cell development their role in immunity has not been extensively studied. In innate immune cells such as macrophages, TLRs drive the production of both pro- and anti-inflammatory cytokines. IL-10 is an important anti-inflammatory cytokine produced by macrophages and it establishes an autocrine feedback loop to inhibit pro-inflammatory cytokine production. We show here that macrophages from Mef2D knockout mice have elevated levels of IL-10 mRNA induction compared with wild-type cells following LPS stimulation. The secretion of IL-10 was also higher from Mef2D knockout macrophages and this correlated to a reduction in the secretion of TNF, IL-6 and IL-12p40. The use of an IL-10 neutralising antibody showed that this reduction in pro-inflammatory cytokine production in the Mef2D knockouts was IL-10 dependent. As the IL-10 promoter has previously been reported to contain a potential binding site for Mef2D, it is possible that the binding of other Mef2 isoforms in the absence of Mef2D may result in a higher activation of the IL-10 gene. Further studies with compound Mef2 isoforms would be required to address this. We also show that Mef2D is highly expressed in the thymus, but that loss of Mef2D does not affect thymic T-cell development or the production of IFNγ from CD8 T cells.
Project description:Toll-like receptors (TLRs) are key receptors in innate immunity and trigger responses following interaction with pathogen-associated molecular patterns (PAMPs). TLR3, TLR4 and TLR9 recognize double stranded RNA, lipopolysaccharide (LPS) and CpG DNA, respectively. These receptors differ importantly in downstream adaptor molecules. TLR4 signals through MyD88 and TRIF; in contrast, the TLR3 pathway involves only TRIF while TLR9 signals solely through MyD88. To determine how differences in downstream signaling could influence gene expression in innate immunity, gene expression patterns were determined for the RAW264.7 macrophage cell line stimulated with LPS, poly (I:C), or CpG DNA. Gene expression profiles 6 and 24h post-stimulation were analyzed to determine genes, pathways and transcriptional networks induced. As these experiments showed, the number and extent of genes expressed varied with stimulus. LPS and poly (I:C) induced an abundant array of genes in RAW264.7 cells at 6h and 24h following treatment while CpG DNA induced many fewer. By analyzing data for networks and pathways, we prioritized differentially expressed genes with respect to those common to the three TLR ligands as well as those shared by LPS and poly (I:C) but not CpG DNA. The importance of changes in gene expression was demonstrated by experiments indicating that RNA interference-mediated inhibition of two genes identified in this analysis, PLEC1 and TPST1, reduced IL-6 production by J774A.1 and RAW264.7 macrophages stimulated with LPS. Together, these findings delineate macrophage gene response patterns induced by different PAMPs and identify new genes that have not previously been implicated in innate immunity.