Project description:The application of metal-organic framework (MOF) materials in electrochemical and electrochromic devices remains rare. One of the main reasons for this is the inability to readily access their detailed electrochemistry. The inherent insolubility of these materials does not allow interrogation by traditional solution-based electrochemical or spectroscopic methods. In this study, we report a straightforward alternative approach to the spectroelectrochemical study of MOFs. We have used two systems as exemplars in this study, MFM-186 and MFM-180. The method involves chemical modification of a working electrode to attach MOF materials without using corrosive reagents such as inorganic acids or bases which otherwise could limit their application in device development. MFM-186 demonstrates the formation of a stable radical species [MFM-186]˙+ on electrochemical oxidation, and this has been characterised by electrochemical, spectroelectrochemical and EPR spectroscopic techniques coupled to DFT analysis.
Project description:Bimetallic silver-copper electrocatalysts are promising materials for electrochemical CO2 reduction reaction (CO2RR) to fuels and multi-carbon molecules. Here, we combine Ag core/porous Cu shell particles, which entrap reaction intermediates and thus facilitate the formation of C2+ products at low overpotentials, with gas diffusion electrodes (GDE). Mass transport plays a crucial role in the product selectivity in CO2RR. Conventional H-cell configurations suffer from limited CO2 diffusion to the reaction zone, thus decreasing the rate of the CO2RR. In contrast, in the case of GDE-based cells, the CO2RR takes place under enhanced mass transport conditions. Hence, investigation of the Ag core/porous Cu shell particles at the same potentials under different mass transport regimes reveals: (i) a variation of product distribution including C3 products, and (ii) a significant change in the local OH- activity under operation.
Project description:Bimetallic tandem catalysts have emerged as a promising strategy to locally increase the CO flux during electrochemical CO2 reduction, so as to maximize the rate of conversion to C-C-coupled products. Considering this, a novel Cu/C-Ag nanostructured catalyst has been prepared by a redox replacement process, in which the ratio of the two metals can be tuned by the replacement time. An optimum Cu/Ag composition with similarly sized particles showed the highest CO2 conversion to C2+ products compared to non-Ag-modified gas-diffusion electrodes. Gas chromatography and in-situ Raman measurements in a CO2 gas diffusion cell suggest the formation of top-bound linear adsorbed *CO followed by consumption of CO in the successive cascade steps, as evidenced by the increasingνC-H bands. These findings suggest that two mechanisms operate simultaneously towards the production of HCO2 H and C-C-coupled products on the Cu/Ag bimetallic surface.
Project description:Catalytic technologies are pivotal in enhancing energy efficiency, promoting clean energy production, and reducing energy consumption in the chemical industry. The pursuit of novel catalysts for renewable energy is a long-term goal for researchers. In this work, we synthesized three two-dimensional covalent organic frameworks (COFs) featuring electron-rich carbazole-based architectures and evaluated their catalytic performance in photocatalytic organic reactions and electrocatalytic oxygen reduction reactions (ORRs). Pyrene-functionalized COF, termed as FCTD-TAPy, demonstrated excellent photocatalytic performance for amino oxidation coupling and showed a remarkable preference for substrates with electron-withdrawing groups (up to >99% Conv. and >99% Sel). Furthermore, FCTD-TAPy favored a four-electron transfer pathway during the ORR and exhibited favorable reaction kinetics (51.07 mV/dec) and a high turnover frequency (0.011 s-1). In contrast, the ORR of benzothiadiazole-based FCTD-TABT favored a two-electron transfer pathway, which exhibited a maximum double-layer capacitance of 14.26 mF cm-2, a Tafel slope of 53.01 mV/dec, and a hydrogen peroxide generation rate of 70.3 mmol g-1 h-1. This work underscores the potential of carbazole-based COFs as advanced catalytic materials and offers new insights into the design of metal-free COFs for enhanced catalytic performance.
Project description:Water management by gas diffusion electrodes is a fundamental aspect of the performance of electrochemical cells. Herein, we introduce the characteristic constrictions size as a descriptor for microporous layers (MPL). This parameter is calculated by volumetric analysis of focused ion beam nanotomography and compared to mercury intrusion porosimetry measurements.
Project description:The electrosynthesis of iron oxide nanoparticles offers a green route, with significant energy and environmental advantages. Yet, this is mostly restricted by the oxygen solubility in the electrolyte. Gas-diffusion electrodes (GDEs) can be used to overcome that limitation, but so far they not been explored for nanoparticle synthesis. Here, we develop a fast, environmentally-friendly, room temperature electrosynthesis route for iron oxide nanocrystals, which we term gas-diffusion electrocrystallization (GDEx). A GDE is used to generate oxidants and hydroxide in-situ, enabling the oxidative synthesis of a single iron salt (e.g., FeCl2) into nanoparticles. Oxygen is reduced to reactive oxygen species, triggering the controlled oxidation of Fe2+ to Fe3+, forming Fe3-xO4-x (0 ≤ x ≤ 1). The stoichiometry and lattice parameter of the resulting oxides can be controlled and predictively modelled, resulting in highly-defective, strain-heavy nanoparticles. The size of the nanocrystals can be tuned from 5 nm to 20 nm, with a large saturation magnetization range (23 to 73 A m2 kg-1), as well as minimal coercivity (~1 kA m-1). Using only air, NaCl, and FeCl2, a biocompatible approach is achieved, besides a remarkable level of control over key parameters, with a view on minimizing the addition of chemicals for enhanced production and applications.
Project description:The allure of metal-organic frameworks (MOFs) in heterogeneous electrocatalysis is that catalytically active sites may be designed a priori with an unparalleled degree of control. An emerging strategy to generate coordinatively-unsaturated active sites is through the use of organic linkers that lack a functional group that would usually bind with the metal nodes. To execute this strategy, we synthesize a model MOF, Ni-MOF-74 and incorporate a fraction of 2-hydroxyterephthalic acid in place of 2,5-dihydroxyterephthalic acid. The defective MOF, Ni-MOF-74D, is evaluated vs. the nominally defect-free Ni-MOF-74 with a host of ex situ and in situ spectroscopic and electroanalytical techniques, using the oxidation of hydroxymethylfurtural (HMF) as a model reaction. The data indicates that Ni-MOF-74D features a set of 4-coordinate Ni-O4 sites that exhibit unique vibrational signatures, redox potentials, binding motifs to HMF, and consequently superior electrocatalytic activity relative to the original Ni-MOF-74 MOF, being able to convert HMF to the desired 2,5-furandicarboxylic acid at 95% yield and 80% faradaic efficiency. Furthermore, having such rationally well-defined catalytic sites coupled with in situ Raman and infrared spectroelectrochemical measurements enabled the deduction of the reaction mechanism in which co-adsorbed *OH functions as a proton acceptor in the alcohol oxidation step and carries implications for catalyst design for heterogeneous electrosynthetic reactions en route to the electrification of the chemical industry.
Project description:We perform Grand Canonical Monte Carlo simulations on a lattice of Mg2+ sites (GCMC) for adsorption of four binary A/B mixtures, CH4/N2, CO/N2, CO2/N2, and CO2/CH4, in the metal-organic framework Mg2(2,5-dioxidobenzedicarboxylate), also known as CPO-27-Mg or Mg-MOF-74. We present a mean field co-adsorption isotherm model and show that its predictions agree with the GCMC results if the same quantum chemical ab initio data are used for Gibbs free energies of adsorption at the individual sites and for lateral interaction energies between the same, A⋯A and B⋯B, and unlike, A⋯B, adsorbed molecules. We use both approaches to test the assumption underlying Ideal Adsorbed Solution Theory (IAST), namely approximating A⋯B interaction energies as the arithmetic mean of A⋯A and B⋯B interaction energies. While IAST works well for mixtures with weak lateral interactions, CH4/N2 and CO/N2, the deviations are large for mixtures with stronger lateral interactions, CO2/N2 and CO2/CH4. Motivated by the theory of London dispersion forces, we propose use of the geometric mean instead of the arithmetic mean and achieve substantial improvements. For CO2/CH4, the lateral interactions become anisotropic. To include this in the geometric mean co-adsorption model, we introduce an anisotropy factor. We propose a protocol, named co-adsorption mean field theory (CAMT), for co-adsorption selectivity prediction from known (experiment or simulation) pure component isotherms which is similar to the IAST protocol but uses the geometric mean to approximate mixed pair interaction energies and yields improved results for non-ideal mixtures.
Project description:Proton-exchange-membrane fuel cells (PEMFCs) offer a long-term, carbon-emission free solution to the energy needs of the transportation sector. However, high cost continues to limit PEMFC commercialization. Replacing expensive platinum group metal (PGM) catalysts with PGM-free catalysts could reduce cost, but the low active site density of PGM-free catalysts necessitates the use of thick electrodes that suffer from substantial mass transport losses. In these thick PGM-free electrodes, effective water management and oxygen transport are crucial to achieve high performance. In this work, we investigate the role of anode and cathode gas diffusion layer (GDL) configurations in controlling water management. Asymmetric GDL configurations, in which the anode GDL exhibits higher permeability than the cathode GDL, showed higher performance compared to conventional symmetric configurations. Computational modeling showed that the improved performance is mainly due to improved water management, resulting in lower liquid water saturation and faster oxygen transport in the cathode.