Project description:Increasing urbanisation is detrimental for some animal species and potentially advantageous for others. Urban-nesting populations of gulls have undergone rapid population increases worldwide, which has resulted in an increase in human-gull conflicts. In order to inform management and conservation decisions in relation to these populations, more information is needed about the behaviour of these birds in urban settings and how they utilise their environment. This study combined Global Positioning System (GPS) tracking data of 12 urban-nesting lesser black-backed gulls, Larus fuscus, with habitat and behaviour data over three breeding seasons (2016-2018). Despite the proximity of marine areas (~10 km), the birds only made significant use of terrestrial environments, spending two-thirds of their time away from the nest in suburban and urban areas, and one-third in rural green areas. The gulls utilised suburban and urban areas more as their chicks grew and appeared to use diverse foraging strategies to suit different habitats. These results indicate that the range of potential foraging areas available needs to be considered in management decisions and that urban bird populations may not use the resources they are expected to.
Project description:Mandt's black guillemot (Cepphus grylle mandtii) is one of the few seabirds associated in all seasons with Arctic sea ice, a habitat that is changing rapidly. Recent decreases in summer ice have reduced breeding success and colony size of this species in Arctic Alaska. Little is known about the species' movements and distribution during the nine month non-breeding period (September-May), when changes in sea ice extent and composition are also occurring and predicted to continue. To examine bird movements and the seasonal role of sea ice to non-breeding Mandt's black guillemots, we deployed and recovered (n = 45) geolocators on individuals at a breeding colony in Arctic Alaska during 2011-2015. Black guillemots moved north to the marginal ice zone (MIZ) in the Beaufort and Chukchi seas immediately after breeding, moved south to the Bering Sea during freeze-up in December, and wintered in the Bering Sea January-April. Most birds occupied the MIZ in regions averaging 30-60% sea ice concentration, with little seasonal variation. Birds regularly roosted on ice in all seasons averaging 5 h d(-1), primarily at night. By using the MIZ, with its roosting opportunities and associated prey, black guillemots can remain in the Arctic during winter when littoral waters are completely covered by ice.
Project description:Understanding how seabirds use the marine environment is key for marine spatial planning, and maps of their marine distributions derived from transect-based surveys and from tracking of individual bird's movements are increasingly available for the same geographic areas. Although the value of integrating these different datasets is well recognised, few studies have undertaken quantitative comparisons of the resulting distributions. Here we take advantage of four existing distribution maps and conduct a quantitative comparison for four seabird species (black-legged kittiwake Rissa tridactyla; European shag Phalacrocorax aristotelis; common guillemot Uria aalge; and razorbill Alca torda). We quantify the amount of overlap and agreement in the location of high use areas identified from either tracking or transect samples and use Bhattacharyya's Affinity to quantify levels of similarity in the general distribution patterns. Despite multiple differences in the properties of the datasets, there was a far greater degree of overlap than would be expected by chance, except when adopting the most constrained definition of high use. Distance to the nearest conspecific colony appeared to be an important driver of the degree of similarity. Agreed areas of highest use tended to occur close to colonies and, with increasing distance from colonies, similarity between datasets declined and/or there was similarity in respect of their being relatively low usage. Interpreting reasons for agreement between data sources in some areas and not others was limited by an inability to control for the multiple potential sources of differences from both the sampling and modelling processes of the underlying datasets. Nevertheless, our quantitative comparative approach provides a valuable tool to quantify the degree to which an area's importance is corroborated across multiple datasets, and therefore confidence that an important area has been correctly identified. This can help prioritise where the implementation of conservation measures should be targeted and identify where greatest scrutiny is required of the potential adverse environmental effects of any planned anthropogenic activities.
Project description:Habitat loss and shifts associated with climate change threaten global biodiversity, with impacts likely to be most pronounced at high latitudes. With the disappearance of the tundra breeding habitats, migratory shorebirds that breed at these high latitudes are likely to be even more vulnerable to climate change than those in temperate regions. We examined this idea using new distributional information on two subspecies of Black-tailed Godwits Limosa limosa in Asia: the northerly, bog-breeding L. l. bohaii and the more southerly, steppe-breeding L. l. melanuroides. Based on breeding locations of tagged and molecularly assayed birds, we modelled the current breeding distributions of the two subspecies with species distribution models, tested those models for robustness and then used them to predict climatically suitable breeding ranges in 2070 according to bioclimatic variables and different climate change scenarios. Our models were robust and showed that climate change is expected to push bohaii into the northern rim of the Eurasian continent. Melanuroides is also expected to shift northward, stopping in the Yablonovyy and Stanovoy Ranges, and breeding elevation is expected to increase. Climatically suitable breeding habitat ranges would shrink to 16% and 11% of the currently estimated ranges of bohaii and melanuroides, respectively. Overall, this study provides the first predictions for the future distributions of two little-known Black-tailed Godwit subspecies and highlights the importance of factoring in shifts in bird distribution when designing climate-proof conservation strategies.
Project description:Human-mediated food sources offer possibilities for novel foraging strategies by opportunistic species. Yet, relative costs and benefits of alternative foraging strategies vary with the abundance, accessibility, predictability and nutritional value of anthropogenic food sources. The extent to which such strategies may ultimately alter fitness, can have important consequences for long-term population dynamics. Here, we studied the relationships between parental diet and early development in free-ranging, cross-fostered chicks and in captive-held, hand-raised chicks of Lesser Black-backed Gulls (Larus fuscus) breeding along the Belgian coast. This traditionally marine and intertidal foraging species is now increasingly taking advantage of human activities by foraging on terrestrial food sources in agricultural and urban environments. In accordance with such behavior, the proportion of terrestrial food in the diet of free-ranging chicks ranged between 4% and 80%, and consistent stable isotope signatures between age classes indicated that this variation was mainly due to between-parent variation in feeding strategies. A stronger terrestrial food signature in free-ranging chicks corresponded with slower chick development. However, no consistent differences in chick development were found when contrasting terrestrial and marine diets were provided ad libitum to hand-raised chicks. Results of this study hence suggest that terrestrial diets may lower reproductive success due to limitations in food quantity, rather than quality. Recent foraging niche expansion toward terrestrial resources may thus constitute a suboptimal alternative strategy to marine foraging for breeding Lesser Black-backed Gulls during the chick-rearing period.
Project description:BackgroundAlthough acoustic communication plays an essential role in the social interactions of Rallidae, our knowledge of how Rallidae encode diverse types of information using simple vocalizations is limited. We recorded and examined the vocalizations of a common coot (Fulica atra) population during the breeding season to test the hypotheses that 1) different call types can be emitted under different behavioral contexts, and 2) variation in the vocal structure of a single call type may be influenced both by behavioral motivations and individual signature. We measured a total of 61 recordings of 30 adults while noting the behavioral activities in which individuals were engaged. We compared several acoustic parameters of the same call type emitted under different behavioral activities to determine how frequency and temporal parameters changed depending on behavioral motivations and individual differences.ResultsWe found that adult common coots had a small vocal repertoire, including 4 types of call, composed of a single syllable that was used during 9 types of behaviors. The 4 calls significantly differed in both frequency and temporal parameters and can be clearly distinguished by discriminant function analysis. Minimum frequency of fundamental frequency (F0min) and duration of syllable (T) contributed the most to acoustic divergence between calls. Call a was the most commonly used (in 8 of the 9 behaviors detected), and maximum frequency of fundamental frequency (F0max) and interval of syllables (TI) contributed the most to variation in call a. Duration of syllable (T) in a single call a can vary with different behavioral motivations after individual vocal signature being controlled.ConclusionsThese results demonstrate that several call types of a small repertoire, and a single call with function-related changes in the temporal parameter in common coots could potentially indicate various behavioral motivations and individual signature. This study advances our knowledge of how Rallidae use "simple" vocal systems to express diverse motivations and provides new models for future studies on the role of vocalization in avian communication and behavior.
Project description:This paper provides a revision of Gymnomitrion and Marsupella in the Korean Peninsula based on a study of the collections housed in the herbaria of Jeonbuk National University (JNU) and the Botanical Garden-Institute in Vladivostok (VBGI). In total, 12 species were recorded (six in Gymnomitrion and seven in Marsupella), including four taxa whose identity was not confirmed with the available materials and suspected to be recorded wrongly. Each confirmed species is annotated by morphological descriptions based on available Korean material, data on ecology, distribution, specimens examined as well as illustrations.
Project description:Earthquakes are natural disasters that cause damage in a wide range of regions and represent a complex system that does not have a clear causal relationship with specific observable factors. This research analyzes the earthquake activities on the Korean Peninsula with respect to spatial and temporal factors. Using logarithmic regression analysis, we showed that the relationship between the location of the earthquake and its frequency in these locations follows a power law distribution. In addition, we showed that since 1998 the average earthquake magnitude has decreased from 3.0143 to 2.5433 and the frequency has risen by 3.98 times. Finally, the spatial analysis revealed significantly concentrated earthquake activities in a few particular areas and showed that earthquake occurrence points have shifted southeast. This research showed the change in earthquake dynamics and concentration of earthquake activities in particular regions over time. This finding implies the necessity of further research on spatially-derived earthquake policies on the change of earthquake dynamics.
Project description:Most important food and feed crops in the world belong to the C3 grass family. The future of food security is highly reliant on achieving genetic gains of those grasses. Conventional breeding methods have already reached a plateau for improving major crops. Genomics tools and resources have opened an avenue to explore genome-wide variability and make use of the variation for enhancing genetic gains in breeding programs. Major C3 annual cereal breeding programs are well equipped with genomic tools; however, genomic research of C3 cool-season perennial grasses is lagging behind. In this review, we discuss the currently available genomics tools and approaches useful for C3 cool-season perennial grass breeding. Along with a general review, we emphasize the discussion focusing on forage grasses that were considered orphan and have little or no genetic information available. Transcriptome sequencing and genotype-by-sequencing technology for genome-wide marker detection using next-generation sequencing (NGS) are very promising as genomics tools. Most C3 cool-season perennial grass members have no prior genetic information; thus NGS technology will enhance collinear study with other C3 model grasses like Brachypodium and rice. Transcriptomics data can be used for identification of functional genes and molecular markers, i.e., polymorphism markers and simple sequence repeats (SSRs). Genome-wide association study with NGS-based markers will facilitate marker identification for marker-assisted selection. With limited genetic information, genomic selection holds great promise to breeders for attaining maximum genetic gain of the cool-season C3 perennial grasses. Application of all these tools can ensure better genetic gains, reduce length of selection cycles, and facilitate cultivar development to meet the future demand for food and fodder.