Project description:Metal-organic framework (MOF) is a class of porous materials providing an excellent platform for engineering heterogeneous catalysis. We herein report the design of MOF Zr-PZDB consisting of Zr6-clusters and PZDB (PZDB = 4,4'-(phenazine-5,10-diyl)dibenzoate) linkers, which served as the heterogeneous donor catalyst for enhanced electron donor-acceptor (EDA) photoactivation. The high local concentration of dihydrophenazine active centers in Zr-PZDB can promote the EDA interaction, therefore resulting in superior catalytic performance over homogeneous counterparts. The crowded environment of Zr-PZDB can protect the dihydrophenazine active center from being attacked by radical species. Zr-PZDB efficiently catalyzes the Minisci-type reaction of N-heterocycles with a series of C-H coupling partners, including ethers, alcohols, non-activated alkanes, amides, and aldehydes. Zr-PZDB also enables the coupling reaction of aryl sulfonium salts with heterocycles. The catalytic activity of Zr-PZDB extends to late-stage functionalization of bioactive and drug molecules, including Nikethamide, Admiral, and Myristyl Nicotinate. Systematical spectroscopy study and analysis support the EDA interaction between Zr-PZDB and pyridinium salt or aryl sulfonium salt, respectively. Photoactivation of the MOF-based EDA adduct triggers an intra-complex single electron transfer from donor to acceptor, giving open-shell radical species for cross-coupling reactions. This research represents the first example of MOF-enabled heterogeneous EDA photoactivation.
Project description:Metal-organic frameworks (MOFs) are demonstrated to be readily activated by treatment with the low surface tension, low boiling point solvent dimethyl ether (DME). The mildness of the method enables access to high surface areas by avoiding structural changes in the framework that often plague thermal activation methods. A distinction from previous methods is that DME activation succeeds for materials with coordinatively unsaturated sites (CUS) and non-CUS MOFs as well. DME displaces solvent molecules occupying the pores of the MOF as well as those coordinated to metal centers; reducing evacuation temperature by using a coordinating, yet highly volatile guest enables low temperature activation with structural retention as demonstrated surface area measurements that match or exceed existing activation protocols.
Project description:Metal-organic frameworks (MOFs) can respond to light in a number of interesting ways. Photochromism is observed when a structural change to the framework is induced by the absorption of light, which results in a color change. In this work, we show that introducing quinoxaline ligands to MUF-7 and MUF-77 (MUF = Massey University Framework) produces photochromic MOFs that change color from yellow to red upon the absorption of 405 nm light. This photochromism is observed only when the quinoxaline units are incorporated into the framework and not for the standalone ligands in the solid state. Electron paramagnetic resonance (EPR) spectroscopy shows that organic radicals form upon irradiation of the MOFs. The EPR signal intensities and longevity depend on the precise structural details of the ligand and framework. The photogenerated radicals are stable for long periods in the dark but can be switched back to the diamagnetic state by exposure to visible light. Single-crystal X-ray diffraction analysis reveals bond length changes upon irradiation that are consistent with electron transfer. The multicomponent nature of these frameworks allows the photochromism to emerge by allowing through-space electron transfer, precisely positioning the framework building blocks, and tolerating functional group modifications to the ligands.
Project description:The ability to control direct electron transfer can facilitate the development of new molecular electronics, light-harvesting materials, and photocatalysis. However, control of direct electron transfer has been rarely reported, and the molecular conformation-electron dynamics relationships remain unclear. We describe direct electron transfer at buried interfaces between an organic polymer semiconductor film and a gold substrate by observing the first dynamical electric field-induced vibrational sum frequency generation (VSFG). In transient electric field-induced VSFG measurements on this system, we observe dynamical responses (<150 fs) that depend on photon energy and polarization, demonstrating that electrons are directly transferred from the Fermi level of gold to the lowest unoccupied molecular orbital of organic semiconductor. Transient spectra further reveal that, although the interfaces are prepared without deliberate alignment control, a subensemble of surface molecules can adopt conformations for direct electron transfer. Density functional theory calculations support the experimental results and ascribe the observed electron transfer to a flat-lying polymer configuration in which electronic orbitals are found to be delocalized across the interface. The present observation of direct electron transfer at complex interfaces and the insights gained into the relationship between molecular conformations and electron dynamics will have implications for implementing novel direct electron transfer in energy materials.
Project description:Heterogeneous reactions associated with porous solid films are ubiquitous and play an important role in both nature and industrial processes. However, due to the no-slip boundary condition in pressure-driven flows, the interfacial mass transfer between the porous solid surface and the environment is largely limited to slow molecular diffusion, which severely hinders the enhancement of heterogeneous reaction kinetics. Herein, we report a hierarchical-structure-accelerated interfacial dynamic strategy to improve interfacial gas transfer on hierarchical conductive metal-organic framework (c-MOF) films. Hierarchical c-MOF films are synthesized via the in-situ transformation of insulating MOF film precursors using π-conjugated ligands and comprise both a nanoporous shell and hollow inner voids. The introduction of hollow structures in the c-MOF films enables an increase of gas permeability, thus enhancing the motion velocity of gas molecules toward the c-MOF film surface, which is more than 8.0-fold higher than that of bulk-type film. The c-MOF film-based chemiresistive sensor exhibits a faster response towards ammonia than other reported chemiresistive ammonia sensors at room temperature and a response speed 10 times faster than that of the bulk-type film.
Project description:The molecule-substrate interaction plays a key role in charge injection organic-based devices. Charge transfer at molecule-metal interfaces strongly affects the overall physical and magnetic properties of the system, and ultimately the device performance. Here, we report theoretical and experimental evidence of a pronounced charge transfer involving nickel tetraphenyl porphyrin molecules adsorbed on Cu(100). The exceptional charge transfer leads to filling of the higher unoccupied orbitals up to LUMO+3. As a consequence of this strong interaction with the substrate, the porphyrin's macrocycle sits very close to the surface, forcing the phenyl ligands to bend upwards. Due to this adsorption configuration, scanning tunneling microscopy cannot reliably probe the states related to the macrocycle. We demonstrate that photoemission tomography can instead access the Ni-TPP macrocycle electronic states and determine the reordering and filling of the LUMOs upon adsorption, thereby confirming the remarkable charge transfer predicted by density functional theory calculations.Charge transfer at molecule-metal interfaces affects the overall physical and magnetic properties of organic-based devices, and ultimately their performance. Here, the authors report evidence of a pronounced charge transfer involving nickel tetraphenyl porphyrin molecules adsorbed on copper.
Project description:Magnetoelectric (ME) materials induced by electron transfer are extremely rare. Electron transfer in these materials invariably occurs between the metal ions. In contrast, ME properties induced by electron transfer from an organic radical to a metal ion have never been observed. Here, we report the ME coupling effect in a mononuclear molecule-based compound [(CH3)3NCH2CH2Br][Fe(Cl2An)2(H2O)2] (1) [Cl2An = chloranilate, (CH3)3NCH2CH2Br+ = (2-bromoethyl)trimethylammonium]. Investigation of the mechanism revealed that the ME coupling effect is realized through electron transfer from the Cl2An to the Fe ion. Measurement of the magnetodielectric (MD) coefficient of 1 indicated a positive MD of up to ∼12% at 103.0 Hz and 370 K, which is very different from that of ME materials with conventional electron transfer for which the MD is generally negative. Thus, the current work not only presents a novel ME coupling mechanism, but also opens a new route to the synthesis of ME coupling materials.
Project description:Hofmann coordination polymers (CPs) that couple the well-studied spin transition of the FeII central ion with electron-responsive ligands provide an innovative strategy toward multifunctional metal-organic frameworks (MOFs). Here, we developed a 2D planar network consisting of metal-cyanide-metal sheets in an unusual coordination mode, brought about by infinitely π-stacked redox-active bipyridinium derivatives as axial ligands. The obtained family of materials show vivid thermochromism attributed to electron transfer and/or electronic spin state change processes that can occur either independently or concomitantly. Importantly, the redox activity of the ligands within the structure leads to the quasi-reversible electrochemical reduction reaction on a spin-crossover complex at solid state. These observations have been confirmed via temperature-dependent single-crystal X-ray diffraction, magnetic measurements, Mössbauer, EPR, optical and vibrational spectroscopies as well as quantum chemical calculations.
Project description:Methane (CH4), which is the main component of natural gas, is an abundant and widely available carbon resource. However, CH4 has a low energy density of only 36 kJ L-1 under ambient conditions, which is significantly lower than that of gasoline (ca. 34 MJ L-1). The activation and catalytic conversion of CH4 into value-added chemicals [e.g., methanol (CH3OH), which has an energy density of ca. 17 MJ L-1], can effectively lift its energy density. However, this conversion is highly challenging due to the inert nature of CH4, characterized by its strong C-H bonds and high stability. Consequently, the development of efficient materials that can optimize the binding and activation pathway of CH4 with control of product selectivity has attracted considerable recent interest. Metal-organic framework (MOF) materials have emerged as particularly attractive candidates for the development of efficient sorbents and heterogeneous catalysts due to their high porosity, low density, high surface area and structural versatility. These properties enable MOFs to act as effective platforms for the adsorption, binding and catalytic conversion of CH4 into valuable chemicals. Recent reports have highlighted MOFs as promising materials for these applications, leading to new insights into the structure-activity relationships that govern their performance in various systems. In this Account, we present analysis of state-of-the-art MOF-based sorbents and catalysts, particularly focusing on materials that incorporate well-defined active sites within confined space. The precise control of these active sites and their surrounding microenvironment is crucial as it directly influences the efficiency of CH4 activation and the selectivity of the resulting chemical products. Our discussion covers key reactions involving CH4, including its activation, selective oxidation of CH4 to CH3OH, dry reforming of CH4, nonoxidative coupling of CH4, and borylation of CH4. We analyze the role of active sites and their microenvironment in the binding and activation of CH4 using a wide range of experimental and computational studies, including neutron diffraction, inelastic neutron scattering, and electron paramagnetic resonance, solid-state nuclear magnetic resonance, infrared and X-ray absorption spectroscopies coupled to density functional theory calculations. In particular, neutron scattering has notable advantages in elucidating host-guest interactions and the mechanisms of the conversion and catalysis of CH4 and CD4. In addition to exploring current advances, the limitations and future direction of research in this area are also discussed. Key challenges include improvements in the stability, scalability, and performance of MOFs under practical conditions, as well as achieving higher selectivity and yields of targeted products. The ongoing development of MOFs and related materials holds great promise for the efficient and sustainable utilization of CH4, transforming it from a low-density energy source into a versatile precursor for a wide range of value-added chemicals. This Account summarizes the design and development of functional MOF and related materials for the adsorption and conversion of CH4.
Project description:A spontaneous entrapment of electron-donating small guest molecules, including tetrathiafulvalene (TTF) and N,N,N',N'-tetramethyl-1,3-propanediamine (TMPDA), was realized in a structurally flexible metal-organic framework, {Mn7(2,7-AQDC)6(2,6-AQDC)(DMA)6}∞ (AQDC = anthraquinone dicarboxylates, DMA = N,N-dimethylacetamide), with electron-accepting anthraquinone groups, generating two MOF guest charge transfer complexes: {Mn7(2,7-AQDC)6(2,6-AQDC)(DMA)6(TTF)5} and {Mn7(2,7-AQDC)6(2,6-AQDC)(DMA)4(H2O)2(TMPDA)7}. Using a mild impregnation procedure, single crystals of the target complexes were obtained via a crystal-to-crystal conversion, and the crystals were suitable for structural analysis. Single crystal X-ray analysis demonstrated the different arrangements of these intercalated donor molecules: some donor molecules interacted with the anthraquinone groups and formed infinite D-A-A-D stacks, some appeared beside the anthraquinone groups but only formed donor-acceptor pairs, and the remainder of the molecules simply filled the space. The charge transfer between the guests and the framework was spectroscopically confirmed, and the radical densities on the organic species were estimated using magnetic susceptibility measurements. Compared with a solid-state mixture of anthraquinone and donor molecules, the evenly distributed donor molecules in the micropores of the MOF resulted in a "solid solution" state and significantly promoted the degree of charge transfer between donors and acceptors. Such an encapsulation process may be adopted as a new strategy for post-modification of the electronic and magnetic properties of MOFs, as well as for generating new semiconducting charge-transfer complexes.