Project description:Chirality plays a significant role in the physical properties and biological functions of many biological materials, e.g., climbing tendrils and twisted leaves, which exhibit chiral growth. However, the mechanisms underlying the chiral growth of biological materials remain unclear. In this paper, we investigate how the Towel Gourd tendrils achieve their chiral growth. Our experiments reveal that the tendrils have a hierarchy of chirality, which transfers from the lower levels to the higher. The change in the helical angle of cellulose fibrils at the subcellular level induces an intrinsic torsion of tendrils, leading to the formation of the helical morphology of tendril filaments. A chirality transfer model is presented to elucidate the chiral growth of tendrils. This present study may help understand various chiral phenomena observed in biological materials. It also suggests that chirality transfer can be utilized in the development of hierarchically chiral materials having unique properties.
Project description:Cyanobacteria are oxygenic photoautotrophs notable for their ability to utilize atmospheric CO2 as the major source of carbon. The prospect of using cyanobacteria in converting solar energy and high concentrations of CO2 (e.g. flue gas from coal power plants) efficiently into biomass and renewable energy sources is of interest to many research fields. In order to guide further advances in this area, a better understanding about the metabolic changes that occur under conditions of high CO2 is important. The objective of this study is to utilize genome-wide microarray expression profiling in the unicellular diazotrophic cyanobacterium Cyanothece 51142 grown in 8% CO2-enriched air and to determined the impact of high CO2 on cyanobacterial cell physiology and growth.
Project description:Hydrothermal reaction of 4,4-trimethylenedipyridine (tmdp) with ZnI2 under 175 degrees C yields a novel compound, {[Zn2I4(tmdp)2]n.[Zn2I4(tmdp)2]n}, which has a chiral infinite double-stranded helical structure consisting of two single-stranded helices of the same handedness.
Project description:Chirality plays an important role in science from enantiomeric separation in chemistry to chiral plasmonics in nanotechnology. However, the understanding of chirality amplification from chiral building blocks to ordered helical superstructures remains a challenge. Here, we demonstrate that topological defects, such as screw dislocations, can drive the chirality transfer from particle to supramolecular structure level during the crystallization process. By using a model system of chiral particles, which enables direct imaging of single particle incorporation into growing crystals, we show that the crystallization kinetic pathway is the key parameter for monitoring, via the defects, the chirality amplification of the crystalline structures from racemic to predominantly homohelical. We provide an explanation based on the interplay between geometrical frustration, racemization induced by thermal fluctuations, and particle chirality. Our results demonstrate that screw dislocations not only promote the growth, but also control the chiral morphology and therefore the functionality of crystalline states.
Project description:Chirality has risen as an attractive topic in materials research in recent years, but the attainment of enantiopure materials remains a major challenge. Herein, we obtained homochiral nanoclusters by a recrystallization strategy, without any chiral factors (i.e., chiral ligands, counterions, etc.). Through the rapid flipping of configuration of silver nanoclusters in solution, the initial racemic Ag40 (triclinic) nanoclusters are converted to homochiral (orthorhombic) as revealed by X-ray crystallography. In the seeded crystallization, one homochiral Ag40 crystal is used as a seed to direct the growth of crystals with specific chirality. Furthermore, enantiopure Ag40 nanoclusters can be used as amplifiers for the detection of chiral carboxylic drugs. This work not only provides chiral conversion and amplification strategies to obtain homochiral nanoclusters but also explains the chirality origin of nanoclusters at the molecular level.
Project description:We solve a two-dimensional model for polymer chain folding in the presence of mechanical pulling force (f) exactly using equilibrium statistical mechanics. Using analytically derived expression for the partition function we determine the phase diagram for the model in the f-temperature (T) plane. A square root singularity in the susceptibility indicates a second order phase transition from a folded to an unfolded state at a critical force (fc) in the thermodynamic limit of infinitely long polymer chain. The temperature dependence of fc shows a reentrant phase transition, which is reflected in an increase in fc as T increases below a threshold value. As a result, for a range of f values, the unfolded state is stable at both low and high temperatures. The high temperature unfolded state is stabilized by entropy whereas the low temperature unfolded state is dominated by favorable energy. The exact calculation could serve as a benchmark for testing approximate theories that are used in analyzing single molecule pulling experiments.
Project description:Cyanobacteria are oxygenic photoautotrophs notable for their ability to utilize atmospheric CO2 as the major source of carbon. The prospect of using cyanobacteria in converting solar energy and high concentrations of CO2 (e.g. flue gas from coal power plants) efficiently into biomass and renewable energy sources is of interest to many research fields. In order to guide further advances in this area, a better understanding about the metabolic changes that occur under conditions of high CO2 is important. The objective of this study is to utilize genome-wide microarray expression profiling in the unicellular diazotrophic cyanobacterium Cyanothece 51142 grown in 8% CO2-enriched air and to determined the impact of high CO2 on cyanobacterial cell physiology and growth. Study of metabolic and cellular adaptations to high CO2 conditions in the unicellular diazotrophic cyanobacterium Cyanothece 51142. Two-condition experiment: 0.03% CO2 vs. 8% CO2. Biological replicates: 2; technical replicates: 3; Spots/ORF: 3 per Chip. Samples were collected at 7 time points over a period of two days, namely, Day1_30minLight (30min), Day1_2hrsLight (2hr), Day1_6hrsLight (6hr), Day1_1hrsDark (13hr), Day1-6hrsDark (18hr), Day2_6hrsLight (30hr) and Day2_6hrsDark (42hr).
Project description:Conducting polymer hydrogels represent a unique class of materials that synergizes the advantageous features of hydrogels and organic conductors and have been used in many applications such as bioelectronics and energy storage devices. They are often synthesized by polymerizing conductive polymer monomer within a nonconducting hydrogel matrix, resulting in deterioration of their electrical properties. Here, we report a scalable and versatile synthesis of multifunctional polyaniline (PAni) hydrogel with excellent electronic conductivity and electrochemical properties. With high surface area and three-dimensional porous nanostructures, the PAni hydrogels demonstrated potential as high-performance supercapacitor electrodes with high specific capacitance (~480 F·g(-1)), unprecedented rate capability, and cycling stability (~83% capacitance retention after 10,000 cycles). The PAni hydrogels can also function as the active component of glucose oxidase sensors with fast response time (~0.3 s) and superior sensitivity (~16.7 ?A · mM(-1)). The scalable synthesis and excellent electrode performance of the PAni hydrogel make it an attractive candidate for bioelectronics and future-generation energy storage electrodes.
Project description:We investigate the effect of helicity in isolated polymers on the topological chirality of their knots with computer simulations. Polymers are described by generic worm-like chains (WLC), where helical conformations are promoted by chiral coupling between segments that are neighbors along the chain contour. The sign and magnitude of the coupling coefficient u determine the sense and strength of helicity. The corrugation of the helix is adjusted via the radius R of a spherical, hard excluded volume around each WLC segment. Open and compact helices are, respectively, obtained for R that is either zero or smaller than the length of the WLC bond, and R that is a few times larger than the bond length. We use a Monte Carlo algorithm to sample polymer conformations for different values of u, spanning the range from achiral polymers to chains with well-developed helices. Monitoring the average helix torsion and fluctuations of chiral order as a function of u, for two very different chain lengths, demonstrates that the coil-helix transition in this model is not a phase transition but a crossover. Statistical analysis of conformations forming the simplest chiral knots, 31, 51, and 52, demonstrates that topological mirror symmetry is broken─knots formed by helices with a given sense prefer one handedness over the other. For the 31 and 51 knots, positive helical sense favors positive handedness. Intriguingly, an opposite trend is observed for 52 knots, where positive helical sense promotes negative handedness. We argue that this special coupling between helicity and topological chirality stems from a generic mechanism: conformations where some of the knot crossings are found in "braids" formed by two tightly interwoven sections of the polymer.
Project description:BackgroundThere is an increasing interest in 'transfer under pressure' (TUP) decompression in commercial diving, bridging traditional surface-oriented diving and saturation diving. In TUP diving the diver is surfaced in a closed bell and transferred isobarically to a pressure chamber for final decompression to surface pressure.MethodsTables for air diving and air and oxygen decompression have been compared for total decompression time (TDT), oxygen breathing time as well as high and low gradient factors (GF high and low). These have been considered surrogate outcome measures of estimated decompression sickness probability (PDCS).ResultsSix decompression tables from DadCoDat (DCD, The Netherlands), Defence and Civil Institute of Environmental Medicine (DCIEM, Canada), Comex MT92 tables (France) and the United States Navy (USN) have been compared. In general, USN and DCD procedures advised longer TDT and oxygen breathing time and had a lower GF high compared to MT92 and DCIEM tables. GF low was significantly higher in USN procedures compared to DCD and one of the MT92 tables due to a shallower first stop in many USN profiles compared to the two others. Allowance and restrictions for repetitive diving varied extensively between the six procedures. While USN procedures have been risk-assessed by probabilistic models, no detailed documentation is available for any of the tables regarding validation in experimental and operational diving.ConclusionsAbsence of experimental testing of the candidate tables precludes firm conclusions regarding differences in PDCS. All candidate tables are recognised internationally as well as within their national jurisdictions, and final decisions on procedure preference may depend on factors other than estimated PDCS. USN and DCD procedures would be expected to have lower PDCS than MT92 and DCIEM procedures, but the magnitude of these differences is not known.