Project description:Non-biaryl atropisomers are valuable in medicine, materials, and catalysis, but their enantioselective synthesis remains a challenge. Herein, a counterion-mediated O-alkylation method for the generation of atropisomeric amides with an er up to 99:1 is outlined. This dynamic kinetic resolution is enabled by the observation that the rate of racemization of atropisomeric naphthamides is significantly increased by the presence of an intramolecular O-H⋅⋅⋅NCO hydrogen bond. Upon O-alkylation of the H-bond donor, the barrier to rotation is significantly increased. Quantum calculations demonstrate that the intramolecular H-bond reduces the rotational barrier about the aryl-amide bond, stabilizing the planar transition state for racemization by approximately 40 kJ mol-1 , thereby facilitating the observed dynamic kinetic resolution.
Project description:In transition metal-catalyzed asymmetric synthesis, enantioselectivity strongly depends on the structures of chiral ligands, so the development of new chiral ligands is crucial. Here, an efficient and highly enantioselective palladium-catalyzed intramolecular hydroarylation has been developed, and a new kind of N-heterocycles, 1H-pyrazolo[5,1-a]isoindol-2(8H)-ones containing a quaternary stereocenter, was prepared in high yields and excellent enantiomeric excess values. The reaction was effectively catalyzed by palladium-diphosphine complexes with numerous functional group tolerance, in which the newly developed axially chiral cyclic diphosphine ligands played key roles in the reactivity and enantioselectivity of the substrates. We believe that the cyclic diphosphine ligands with adjustable dihedral angles will find wide application in asymmetric synthesis.
Project description:Here we report that readily available silyl- and boron-based Lewis acids in combination with chiral copper catalysts are able to overcome the reactivity issues of unactivated enamides, known as the least reactive carboxylic acid derivatives, toward alkylation with organomagnesium reagents. Allowing unequaled chemo-reactivity and stereocontrol in catalytic asymmetric conjugate addition to enamides, the method is distinguished by its unprecedented reaction scope, allowing even the most challenging and synthetically important methylations to be accomplished with good yields and excellent enantioselectivities. This catalytic protocol tolerates a broad temperature range (-78 °C to ambient) and scale up (10 g), while the chiral catalyst can be reused without affecting overall efficiency. Mechanistic studies revealed the fate of the Lewis acid in each elementary step of the copper-catalyzed conjugate addition of Grignard reagents to enamides, allowing us to identify the most likely catalytic cycle of the reaction.
Project description:The β-H elimination, as one of the most important elementary reactions in transition metal chemistry, is a key step in quenching the carbon-palladium bond for the Heck reaction. However, the β-H elimination of the alkenyl palladium species leading to allene is an energetically unfavored process, and therefore, it has been a long-standing challenge in control of this process via enantioselective manner. We developed a concise and efficient methodology to construct trisubstituted chiral allenes from stereodefined fully substituted enol triflates by the enantioselective β-H elimination of the alkenyl palladium species under mild conditions. The identified Xu-Phos play a crucial role in the chemoselectivity and enantioselectivity. Multiple linear regression analysis shows the important steric effect on enantioselectivity. DFT computation results allow us to propose an intramolecular base (-OAc)-assisted deprotonation mechanism for this progress. Distortion-interaction and energy decomposition analysis indicate that the difference in electrostatic energy (Eelec) of the two intramolecular base-assisted deprotonation transition states dominates the stereoselectivity.
Project description:A concise asymmetric synthesis of (+)-aphanorphine has been achieved via a new enantioconvergent strategy. A racemic γ-aminoalkene derivative is transformed into a 1:1 mixture of enantiomerically enriched diastereomers using an asymmetric Pd-catalyzed carboamination. This mixture is then converted to an enantiomerically enriched protected aphanorphine derivative by a Friedel-Crafts reaction, which generates a quaternary all-carbon stereocenter. The natural product is obtained in three additional steps.
Project description:There are few enantioconvergent reactions in which racemic substrates bearing multiple stereochemical features are converted into products with high levels of diastereo- and enantiocontrol. Here, we disclose a process for the highly enantio- and diastereoselective syntheses of medium ring lactams via an intramolecular counterion-directed C-alkylation reaction. The treatment of racemic biaryl anilides that exist as a complex mixture of enantiomers and diastereoisomeric conformers by virtue of multiple axes of restricted rotation with a quinidine-derived ammonium salt under basic conditions affords medium ring lactams bearing elements of both axial and point chirality via an enolate-driven configurational relaxation process. Thermal equilibration of the syn- and anti-product diasteroisomers has demonstrated that the barriers to bowl inversion are >124 kJ mol-1. We propose that the chiral ammonium salt differentiates between a complex and rapidly equilibrating mixture of enolate and rotational isomers, ultimately leading to highly enantioselective alkylative ring closure. This dynamic and enantioconvergent process offers an operationally simple approach to the synthesis of valuable chiral medium ring lactams for which there are few catalytic and enantioselective approaches.
Project description:The development of a gold(III) catalyzed direct enantioconvergent 1,5-enyne cycloisomerization and kinetic resolution reaction is described. The transformation results in highly enantioenriched bicyclo[3.1.0]hexenes at all levels of conversion, with no racemization or symmetrization taking place during the course of the reaction, and simultaneously affords optically enriched 1,5-enynes. This report marks the first highly enantioselective transformation catalyzed by a well-defined cationic gold(III) catalyst and demonstrates the unique potential of gold(III) complexes in enantioselective catalysis.
Project description:Axially chiral diaryl ethers represent a distinct class of atropisomers, characterized by a unique dual C─O axes system, which have been found in a variety of natural products, pharmaceuticals, and ligands. However, the catalytic enantioselective synthesis of these atropoisomers poses significant challenges, due to the difficulty in controlling both chiral C─O axes, and their more flexible conformations. Herein, an efficient protocol for catalytic enantioselective synthesis of axially chiral diaryl ethers is presented using organocatalyzed asymmetric Povarov reaction-enabled desymmetrization, followed by aromatizations. This method yields a wide range of novel quinoline-based diaryl ether atropoisomers in good yields and high enantioselectivities. Notably, various aromatization protocols are developed, resulting in a diverse set of polysubstituted quinoline-containing diaryl ether atropisomers. Thermal racemization studies suggested excellent configurational stabilities for these novel diaryl ether atropisomers (with racemization barriers up to 38.1 kcal mol-1). Moreover, this research demonstrates for the first time that diaryl ether atropisomers lacking the bulky t-Bu group can still maintain a stable configuration, challenging the prior knowledge in the field. The fruitful derivatizations of the functional group-rich chiral products further underscore the value of this method.
Project description:Metal-catalyzed aminocarbonylation is a standard approach for installing amide functionality in chemical synthesis. Despite broad application of this transformation using aryl or vinyl electrophiles, there are few examples involving unactivated aliphatic substrates. Furthermore, there are no stereocontrolled aminocarbonylations of alkyl electrophiles known. Herein, we report a stereospecific aminocarbonylation of unactivated alkyl tosylates for the synthesis of enantioenriched amides. This cobalt-catalyzed transformation uses a remarkably broad range of amines and proceeds with excellent stereospecificity and chemoselectivity.
Project description:The copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction is regarded as a prime example of "click chemistry", but the asymmetric click cycloaddition of internal alkynes still remains challenging. A new asymmetric Rh-catalyzed click cycloaddition of N-alkynylindoles with azides was developed, providing atroposelective access to C-N axially chiral triazolyl indoles, a new type of heterobiaryl, with excellent yields and enantioselectivity. This asymmetric approach is efficient, mild, robust and atom-economic, and features very broad substrate scope with easily available Tol-BINAP ligands.