Project description:BackgroundWe aimed to find the exposure level of triclosan (TCS), a known endocrine disruptor, related to the use of personal care products using a nationally representative data of the general population in Korea.MethodsThis study included data of 6288 adults aged 19 years and older (2692 men, 3596 women), based on the Second Korean National Environmental Health Survey (KoNEHS 2012-2014). The data were divided according to gender. The frequency and proportion of each variable were determined by dividing participants into two groups based on the top 75th percentile concentration of urinary TCS (male: 1.096 μg/g creatinine, female: 1.329 μg/g creatinine). Odds ratios (ORs) were calculated using logistic regression analysis for the high TCS exposure and low TCS exposure groups.ResultsOverall, the proportion of participants using personal care products was higher in women than in men. There was a significantly higher proportion of participants in the high TCS exposure group with younger age, higher education and income levels and with more frequent use of fragrance products, hair care products, body cleansers, cosmetics, and antimicrobial agents. In both men and women, ORs tended to increase with increased frequency of use of hair care products, body cleansers, and cosmetics before and after adjustment.ConclusionsOur findings demonstrate that as the frequency of use of personal care products increases, urine TCS concentration increases. Because TCS is a well-known endocrine disruptor, further studies are needed and explore other health effects with exposure to TCS in general population in Korea.
Project description:The Korean National Environmental Health Survey (KoNEHS) program provides useful information on chemical exposure, serves as the basis for environmental health policies, and suggests appropriate measures to protect public health. Initiated on a three-year cycle in 2009, it reports the concentrations of major environmental chemicals among the representative Korean population. KoNEHS Cycle 3 introduced children and adolescents into the analysis, where the blood and urine samples of 6167 participants were measured for major metals, phthalates, phenolics, and other organic compounds. Lead, mercury, cadmium, metabolites of DEHP and DnBP, and 3-phenoxybenzoic acid levels of the Korean adult population tended to decrease compared to previous survey cycles but remained higher than those observed in the US or Canada. Both bisphenol A (BPA) and trans,trans-muconic acid concentrations have increased over time. Heavy metal concentrations (blood lead, and cadmium) in children and adolescents were approximately half that of adults, while some organic substances (e.g., phthalates and BPA) were high. BPA showed higher levels than in the US or Canada, whereas BPF and BPS showed lower detection rates in this cycle; however, as these are increasingly used as a substitute for BPA, further research is necessary. As environmental chemicals may affect childhood health and development, additional analyses should assess exposure sources and routes through continuous observations.
Project description:BackgroundBenzene is a ubiquitous air pollutant that is well known to cause hematopoietic effects in humans including leukemia. Recently, several studies have discussed its non-carcinogenic effects such as diabetes. This study aimed to investigate the association between diabetes and urinary trans,trans-muconic acid (t,t-MA), one of benzene metabolite, using adult data from Korean National Environmental Health Survey (KoNEHS) cycle 3 (2015-2017).MethodsThis study analyzed 3,777 adults (1,645 men and 2,132 women) from the KoNEHS cycle 3 (2015-2017). The distribution and fraction of each independent variable were presented separately according to the urinary benzene metabolite levels (t,t-MA quartiles) and diabetes to determine the general characteristics of the subjects. Odds ratios (ORs) were calculated using logistic regression after stratification by gender and smoking status to identify the association between urinary t,t-MA and diabetes.ResultsCompared with the first quartile (reference), the risk of diabetes significantly increased above the 4th (1.834 [1.107-3.039]) quartile in men and above the 3rd (1.826 [1.095-3.044]) and 4th (2.243 [1.332-3.776]) quartiles in women after adjustment. Stratified analysis based on smoking revealed that the ORs for the 3rd (1.847 [1.146-2.976]) and 4th (1.862 [1.136-3.052]) quartiles in non-smokers and those for the 2nd (1.721 [1.046-2.832]), 3rd (1.797 [1.059-3.050]), and 4th (2.546 [1.509-4.293]) quartiles in smokers were significantly higher.ConclusionsWe confirmed that urinary t,t-MA is significantly associated with diabetes regardless of gender and smoking status. And further studies are necessary to access the clinical impacts of this findings.
Project description:BackgroundPhthalates and bisphenol A (BPA) are synthetic chemicals widely used in daily life. This study investigated urinary phthalate and BPA levels in Korean children and their associations with obesity.MethodsA total of 2,351 children aged 3 to 17 years who participated in the Korean National Environmental Health Survey 2015 to 2017 were included. Urinary dilution was corrected using covariate-adjusted standardization (CAS). We examined the geometric mean (GM) concentrations of urinary phthalate metabolites, including di (2-ethylhexyl) phthalate (DEHP) metabolites (mono [2-ethyl-5-hydroxyhexyl] phthalate, mono [2-ethyl-5-oxohexyl] phthalate, and mono [2-ethyl-5-carboxypentyl] phthalate [MECPP]), mono-benzyl-phthalate (MBzP), mono (carboxyoctyl) phthalate (MCOP), mono (carboxy-isononyl) phthalate (MCNP), mono (3-carboxypropyl) phthalate, and mono-n-butyl-phthalate (MnBP), and BPA. We also analyzed the odds ratio (OR) for obesity according to the quartiles of each analyte.ResultsThe urinary GM levels of DEHP metabolites and MnBP were notably higher among Korean children than among American, Canadian, and German children. The CAS-applied GM concentrations of most analytes, except for MBzP, MCOP, and MCNP, were higher in children aged 3 to 5 years than in those aged 6 to 17 years. The OR for obesity in the highest quartile of MECPP was significantly higher than in the lowest quartile after adjusting for covariates. However, the other phthalate metabolites and BPA were not significantly associated with obesity.ConclusionThe concentrations of urinary DEHP metabolites and MnBP were higher in Korean children than in children in Western countries. Urinary MECPP exposure, but not other phthalates or BPA, showed a positive association with obesity in Korean children. Further studies are required to elucidate the causal relationships.
Project description:Cardiovascular disease (CVD) is a leading cause of death in Korea. Dyslipidemia, characterized by the presence of abnormal lipid levels, has been suggested as an early diagnostic and preventable factor for CVD. Recent studies have shown that exposure to lead (Pb), cadmium (Cd), and mercury (Hg) affects lipid metabolism. This study aimed to verify the association between heavy metal concentrations and serum lipid profiles in the general population. A representative sample of 2591 Korean adults from the Korean National Environmental Health Survey (2015-2017) was analyzed. The associations between heavy metals [Blood Pb (BPb), blood Hg (BHg), urinary Hg (UHg), urinary Cd (UCd)] and serum lipid profiles [total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), non-low level of high-density lipoprotein cholesterol (Non-HDL-C)] were assessed using regression analysis. After adjusting for demographic and socioeconomic factors, the proportional changes in serum lipid levels were significantly associated with increases in BPb, BHg, and UHg levels (p for trend < 0.05). Overall, BPb, BHg, and Uhg levels positively correlated with dyslipidemia, whereas UCd levels did not show a significant association. Our results suggest that heavy metal exposure, at low levels, may contribute to an increased prevalence of dyslipidemia in Korean adults.
Project description:Recovering phosphorus from wastewater in more concentrated forms has potential to sustainably recirculate phosphorus from cities to agriculture. The environmental sustainability of wastewater-based phosphorus recovery processes or wastewater-derived phosphorus products can be evaluated using life cycle assessment (LCA). Many LCA studies used a process perspective to account for the impacts of integrating phosphorus recovery processes at wastewater treatment plants, while some used a product perspective to assess the impacts of producing wastewater-derived phosphorus products. We demonstrated the application of an end-user perspective by assessing life cycle environmental impacts of substituting half of the conventional phosphorus rock-based fertilizers used in three crop production systems with wastewater-derived phosphorus products from six recovery pathways (RPs). The consequential LCA results show that the substitution reduces global warming potential, eutrophication potential, ecotoxicity potential, and acidification potential of the assessed crop production systems in most RPs and scenarios. The end-user perspective introduced in this study can (i) complement with the process perspective and the product perspective to give a more holistic picture of environmental impacts along the "circular economy value chains" of wastewater-based resource recovery, (ii) enable systemwide assessment of wide uptake of wastewater-derived products, and (iii) draw attention to understanding the long-term environmental impacts of using wastewater-derived products.
Project description:BackgroundEnvironmental exposure to benzene and toluene is a suspected risk factor for metabolic disorders among the general adult population. However, the effects of benzene and toluene on blood lipid profiles remain unclear. In this study, we investigated the association between urinary blood lipid profiles and metabolites of benzene and toluene in Korean adults.MethodsWe analyzed the data of 3,423 adults from the Korean National Environmental Health Survey Cycle 3 (2015-2017). We used urinary trans,trans-muconic acid (ttMA) as a biomarker of benzene exposure, and urinary benzylmercapturic acid (BMA) as an indicator of toluene exposure. Multivariate logistic regression analyses were performed to explore the association between blood lipid profiles and urinary metabolites of benzene and toluene. Additionally, we examined the linear relationship and urinary metabolites of benzene and toluene between lipoprotein ratios using multivariate regression analyses.ResultsAfter adjusting for covariates, the fourth quartile (Q4) of ttMA [odds ratio (OR) (95% confidence interval, CI = 1.599 (1.231, 2.077)] and Q3 of BMA [OR (95% CI) = 1.579 (1.129, 2.208)] were associated with an increased risk of hypertriglyceridemia. However, the Q4 of urinary ttMA [OR (95% CI) = 0.654 (0.446, 0.961)] and Q3 of urinary BMA [OR (95% CI) = 0.619 (0.430, 0.889)] decreased the risk of a high level of low-density lipoprotein cholesterol (LDL-C). Higher urinary ttMA levels were positively associated with the ratio of triglycerides to high-density lipoproteins [Q4 compared to Q1: β = 0.11, 95% CI: (0.02, 0.20)]. Higher urinary metabolite levels were negatively associated with the ratio of low-density lipoprotein to high-density lipoprotein [Q4 of ttMA compared to reference: β = -0.06, 95% CI: (-0.11, -0.01); Q4 of BMA compared to reference: β = -0.13, 95% CI: (-0.19, -0.08)].ConclusionBenzene and toluene metabolites were significantly and positively associated with hypertriglyceridemia. However, urinary ttMA and BMA levels were negatively associated with high LDL-C levels. These findings suggest that environmental exposure to benzene and toluene disrupts lipid metabolism in humans.
Project description:GPR54, or KiSS-1R (Kisspeptin receptor), is key in puberty initiation and tumor metastasis prevention, but its role on hair follicles remains unclear. Our study shows that Gpr54 knockout (KO) accelerates hair cycle, synchronized hair regeneration and transplanted hair growth in mice. In Gpr54 KO mice, DPC (dermal papilla cell) activity is enhanced, with elevated expression of Wnts, VEGF, and IGF-1, which stimulate HFSCs. Gpr54 deletion also raises the number of CD34+ and Lgr5+ HFSCs. The Gpr54 inhibitor, kisspeptin234, promotes hair shaft growth in cultured mouse hair follicles and boosts synchronized hair regeneration in vivo. Mechanistically, Gpr54 deletion suppresses NFATC3 expression in DPCs and HFSCs, and decreases levels of SFRP1, a Wnt inhibitor. It also activates the Wnt/β-catenin pathway, promoting β-catenin nuclear localization and upregulating target genes such as Lef1 and ALP. Our findings suggest that Gpr54 deletion may accelerate the hair cycle and promote hair regeneration in mice by regulating the NAFTc3-SFRP1-Wnt signaling pathway. These findings suggest that Gpr54 could be a possible target for future hair loss treatments.
Project description:AbstractThis study is aimed at evaluating through Life Cycle Assessment (LCA) the environmental performances of an integrated system of an existing Water Resources Recovery Facility (WRRF) and a hypothetical hydrothermal carbonization (HTC) plant applied to the generated sewage sludge (SS). Beside the valorisation of the solid product (hydrochar, HC) as a fuel substituting lignite, the possibility to valorize also the liquid fraction (process water, PW) derived by the HTC, by anaerobic digestion to produce biogas, is here proposed and analysed. Additionally, phosphorus recovery from HC, prior its use, by acid leaching with nitric acid is also suggested and evaluated. Thus, four integrated scenarios, based on SS carbonization, are proposed and compared with the current SS treatment, based on composting outside of the WRRF (Benchmark scenario). The proposed scenarios, based on HTC, show improved performances with respect to the benchmark one, for thirteen of sixteen considered impact indicators. For the Climate Change (CC) indicator, the two HTC scenarios are able to reduce the impacts up to - 98%, with respect to the Benchmark. Further, the introduction of anaerobic digestion of PW proves to reduce impacts more than other configurations in eleven on sixteen impact categories. On the contrary, the introduction of phosphorus recovery process negatively affects the values for most of indicators. Thus, possible solutions to improve the integration of this process are outlined (e.g., the use of sulfuric acid instead of nitric one, or the application of a different ratio between solid and acidified solution during acid leaching of HC to recover phosphorus).Graphical abstractSupplementary informationThe online version contains supplementary material available at 10.1007/s12649-022-01821-x.
Project description:Polydimethylsiloxane (PDMS) is a silicone elastomer-based material that is used in various applications, including coatings, tubing, microfluidics, and medical implants. PDMS has been modified with hydrogel coatings to prevent fouling, which can be done through UV-mediated free radical polymerization using benzophenone. However, to the best of our knowledge, the properties of hydrogel coatings and their influence on the bulk properties of PDMS under various preparation conditions, such as the type and concentration of monomers, and UV treatment time, have never been investigated. Acrylate-based monomers were used to perform free radical polymerization on PDMS surfaces under various reaction conditions. This approach provides insights into the relationship between the hydrogel coating and bulk properties of PDMS. Altering the UV polymerization time and the monomer concentration resulted in different morphologies with different roughness and thickness of the hydrogel coating, as well as differences in the bulk material stiffness. The surface morphology of the coated PDMS was characterized by AFM. The cross section and thickness of the coatings were examined using scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy. The dependence of coating development on the monomer type and concentration used was evaluated by surface hydrophilicity, as measured by water contact angle. Elongation-until-break analysis revealed that specific reaction conditions affected the bulk properties and made the coated PDMS brittle. Therefore, boundary conditions have been identified to enable high quality hydrogel coating formation without affecting the bulk properties of the material.