Project description:We describe genomic findings in an AML case with isochromosome 7p, i(7)(p10), in which SNP array analysis uncovered an additional 7.07-Mb 20q deletion not detected by karyotyping. Several AML cases with i(7)(p10) as an isolated cytogenetic finding have been previously reported. Based on consequent loss of 7q, we propose that AML with i(7)(p10) represents a distinct entity belonging in the WHO group -7/7q-, which represents one of the genetic abnormalities defining AML, myelodysplasia-related. Additionally, the focal del(20q) identified here adds support for a specific common region of deletion in 20q in myeloid malignancies, implicating a small number of candidate genes.
Project description:Schizophrenia and bipolar disorder are leading causes of morbidity across all populations, with heritability estimates of approximately 80% indicating a substantial genetic component. Population genetics and genome-wide association studies suggest an overlap of genetic risk factors between these illnesses but it is unclear how this genetic component is divided between common gene polymorphisms, rare genomic copy number variants, and rare gene sequence mutations. We report evidence that the lipid transporter gene ABCA13 is a susceptibility factor for both schizophrenia and bipolar disorder. After the initial discovery of its disruption by a chromosome abnormality in a person with schizophrenia, we resequenced ABCA13 exons in 100 cases with schizophrenia and 100 controls. Multiple rare coding variants were identified including one nonsense and nine missense mutations and compound heterozygosity/homozygosity in six cases. Variants were genotyped in additional schizophrenia, bipolar, depression (n > 1600), and control (n > 950) cohorts and the frequency of all rare variants combined was greater than controls in schizophrenia (OR = 1.93, p = 0.0057) and bipolar disorder (OR = 2.71, p = 0.00007). The population attributable risk of these mutations was 2.2% for schizophrenia and 4.0% for bipolar disorder. In a study of 21 families of mutation carriers, we genotyped affected and unaffected relatives and found significant linkage (LOD = 4.3) of rare variants with a phenotype including schizophrenia, bipolar disorder, and major depression. These data identify a candidate gene, highlight the genetic overlap between schizophrenia, bipolar disorder, and depression, and suggest that rare coding variants may contribute significantly to risk of these disorders.
Project description:Mutations in the DNMT3A, TET2, IDH1, and IDH2 genes carry prognostic significance and occur frequently in adult acute myeloid leukemia (AML). Leukemic mutations in all four genes have recently been implicated in aberrant DNA methylation, a hallmark of neoplasia. We previously reported that IDH1 mutations were absent, whereas TET2 mutations were present in 6%, of pediatric AML patients; in the present study, we determined the prevalence of DNMT3A and IDH2 mutations in pediatric AML.We screened for DNMT3A and IDH2 mutations by direct sequencing of diagnostic specimens from 180 children treated on the Children's Oncology Group clinical trial AAML03P1. Clinical characteristics, the presence of other leukemic mutations, and survival outcome was determined for mutation-positive patients.No disease-associated DNMT3A mutations were detected. IDH2 mutations were detected in 4/180 patients (2.2%), affecting codons R140 (n?=?3) and R172 (n?=?1). Two patients with IDH2 mutations harbored t(8;21), one patient harbored an MLL translocation, and one patient had a concomitant NPM1 mutation. FLT3, CEBPA, and WT1 mutations did not occur together with IDH2 mutations in our study.DNMT3A and IDH2 mutations are uncommon in pediatric AML. The low prevalence of methylation-associated mutations in our study highlights the differences in the pathogenesis of pediatric versus adult AML, at the genetic as well as potentially at the epigenetic level. The age-specific characteristics of AML underscore the importance of studying the molecular biology of both childhood and adult forms of this leukemia in parallel, as the development of novel therapeutics should account for these biologic differences.
Project description:Routine genetic profiling of acute myeloid leukemia (AML) at initial diagnosis has allowed subgroup specific prognostication, drug development, and clinical management strategies. The optimal approach for treatment response assessment for AML subgroups has not yet however been determined. A nationwide cohort of 257 adult patients in first remission (CR1) from AML associated with an IDH2 mutation (IDH2m) undergoing allogeneic transplant during the period 2013-2019 in the United States had rates of relapse and survival three years after transplantation of 24% and 71%, respectively. Pre-transplant clinical flow cytometry assessment was not useful in stratifying patients based on risk of post-transplant relapse or death. DNA-sequencing was performed on CR1 blood collected within 100 days before transplant. Persistent detection of IDH2m was common (51%) and associated with increased relapse and death compared to testing negative. Co-mutation at initial diagnosis with mutated NPM1 and/or FLT3-ITD was common in this cohort (41%) and use of these validated MRD markers provided superior stratification compared to IDH2m testing. Patients testing negative for IDH2m prior to transplant had low relapse-related death, regardless of conditioning intensity. Post-transplant relapse rates for those with persistently detectable IDH2m in pre-transplant remission were lower after the FDA approval of enasidenib in August 2017.
Project description:Mutant isocitrate dehydrogenase (IDH) 1 and 2 play a pathogenic role in cancers, including acute myeloid leukemia (AML), by producing oncometabolite 2-hydroxyglutarate (2-HG). We recently reported that tyrosine phosphorylation activates IDH1 R132H mutant in AML cells. Here, we show that mutant IDH2 (mIDH2) R140Q commonly has K413 acetylation, which negatively regulates mIDH2 activity in human AML cells by attenuating dimerization and blocking binding of substrate (α-ketoglutarate) and cofactor (NADPH). Mechanistically, K413 acetylation of mitochondrial mIDH2 is achieved through a series of hierarchical phosphorylation events mediated by tyrosine kinase FLT3, which phosphorylates mIDH2 to recruit upstream mitochondrial acetyltransferase ACAT1 and simultaneously activates ACAT1 and inhibits upstream mitochondrial deacetylase SIRT3 through tyrosine phosphorylation. Moreover, we found that the intrinsic enzyme activity of mIDH2 is much higher than mIDH1, thus the inhibitory K413 acetylation optimizes leukemogenic ability of mIDH2 in AML cells by both producing sufficient 2-HG for transformation and avoiding cytotoxic accumulation of intracellular 2-HG.
Project description:BackgroundTrisomy 19q is a recognizable syndrome and associated with a wide spectrum of clinical phenotypes in clinic. The purpose of this study was to explore the prenatal phenotypes of 19q13.42 duplication, which was rarely reported in clinic.Case presentationThree pregnant women presenting diverse indications for prenatal diagnosis accepted amniocentesis: increased nuchal translucency and fetal pyelic separation (case 2) and high risk of maternal serum screening for Down syndrome (case 1 and case 3). Case 1 and case 2 shared similar duplicated locus in the region of 19q13.42, encompassing part NLRP12 gene. The latter inherited the chromosomal duplication from the mother with normal phenotypes. Case 3 carried a 1.445 Mb duplication in the 19q13.42q13.43 region. It was proposed that evolutionary duplication of NLRP12 gene could have a causative role in autoinflammatory diseases development. The genotype-phenotype correlation depends mainly on the duplicated size and functional genes involved, which is still yet to be determined. All pregnant women chose to continue the pregnancy and delivered healthy children with no apparent abnormalities.ConclusionsThe 19q13.42 microduplications in our study were the smallest fragments compared to previous literature. Our findings enriched the prenatal phenotypes for this chromosomal microscopic imbalance. It was proposed that long term follow up analysis should be guaranteed till adulthood to determine whether there will be other emerging clinical symptoms and developmental-behavioral disorders for such carriers.
Project description:Acute myeloid leukemia (AML) is a haematological malignancy characterized by the excessive proliferation of immature myeloid cells coupled with impaired differentiation. Many AML cases have been reported without any known cytogenetic abnormalities and carry no mutation in known AML-associated driver genes. In this study, 200 AML cases were selected from a publicly available cohort and differentially analyzed for genetic, epigenetic, and cytogenetic abnormalities. Three genes (FLT3, DNMT3A, and NPMc) are found to be predominantly mutated. We identified several aberrations to be associated with genome-wide methylation changes. These include Del (5q), T (15; 17), and NPMc mutations. Four aberrations-Del (5q), T (15; 17), T (9; 22), and T (9; 11)-are significantly associated with patient survival. Del (5q)-positive patients have an average survival of less than 1 year, whereas T (15; 17)-positive patients have a significantly better prognosis. Combining the methylation and mutation data reveals three distinct patient groups and four clusters of genes. We speculate that combined signatures have the better potential to be used for subclassification of AML, complementing cytogenetic signatures. A larger sample cohort and further investigation of the effects observed in this study are required to enable the clinical application of our patient classification aided by DNA methylation.
Project description:BackgroundThe role of microRNAs (miRNAs), important post-transcriptional regulators, in the pathogenesis of acute myeloid leukemia (AML) is just emerging and has been mainly studied in adults. First studies in children investigate single selected miRNAs, however, a comprehensive overview of miRNA expression and function in children and young adults is missing so far.Methodology/principal findingsWe here globally identified differentially expressed miRNAs between AML subtypes in a survey of 102 children and adolescent. Pediatric samples with core-binding factor AML and promyelocytic leukemia could be distinguished from each other and from MLL-rearranged AML subtypes by differentially expressed miRNAs including miR-126, -146a, -181a/b, -100, and miR-125b. Subsequently, we established a newly devised immunoprecipitation assay followed by rapid microarray detection for the isolation of Argonaute proteins, the hallmark of miRNA targeting complexes, from cell line models resembling core-binding factor and promyelocytic leukemia. Applying this method, we were able to identify Ago-associated miRNAs and their targeted mRNAs.Conclusions/significancemiRNAs as well as their mRNA-targets showed binding preferences for the different Argonaute proteins in a cell context-dependent manner. Bioinformatically-derived pathway analysis suggested a concerted action of all four Argonaute complexes in the regulation of AML-relevant pathways. For the first time, to our knowledge, a complete AML data set resulting from carefully devised biochemical isolation experiments and analysis of Ago-associated miRNAs and their target-mRNAs is now available.
Project description:IDH2 (isocitrate dehydrogenase 2) mutations occur in approximately 15% of patients with acute myeloid leukemia (AML). The IDH2 inhibitor enasidenib was recently approved for IDH2-mutated relapsed or refractory AML. We conducted a multi-center, phase I trial of maintenance enasidenib following allogeneic hematopoietic cell transplantation (HCT) in patients with IDH2-mutated myeloid malignancies. Two dose levels, 50mg and 100mg daily were studied in a 3 × 3 dose-escalation design, with 10 additional patients treated at the recommended phase 2 dose (RP2D). Enasidenib was initiated between days 30 and 90 following HCT and continued for twelve 28-day cycles. Twenty-three patients were enrolled, of whom 19 initiated post-HCT maintenance. Two had myelodysplastic syndrome, and 17 had AML. All but 3 were in first complete remission. No dose limiting toxicities were observed, and the RP2D was established at 100mg daily. Attributable grade ≥3 toxicities were rare, with the most common being cytopenias. Eight patients stopped maintenance before completing 12 cycles, due to adverse events (n=3), pursuing treatment for graft-vs-host disease (GVHD) (n=2), clinician choice (n=1), relapse (n=1), and COVID infection (n=1). No cases of grade ≥3 acute GVHD were seen, and 12-month cumulative incidence of moderate/severe chronic GVHD was 42% (20-63%). Cumulative incidence of relapse was 16% (95% CI: 3.7-36%); 1 subject relapsed while receiving maintenance. Two-year progression-free and overall survival were 69% (95% CI: 39-86%) and 74% (95% CI, 44-90%), respectively. Enasidenib is safe, well-tolerated, with preliminary activity as maintenance therapy following HCT, and merits additional study. The study was registered at www.clinicaltrials.gov (#NCT03515512).
Project description:Understanding the unique phenotypes and complex signaling pathways of leukemia stem cells (LSCs) will provide insights and druggable targets that can be used to eradicate acute myeloid leukemia (AML). Current work on AML LSCs is limited by the number of parameters that conventional flow cytometry (FCM) can analyze because of cell autofluorescence and fluorescent dye spectral overlap. Single-cell mass cytometry (CyTOF) substitutes rare earth elements for fluorophores to label antibodies, which allows measurements of up to 120 parameters in single cells without correction for spectral overlap. The aim of this study was the evaluation of intracellular signaling in antigen-defined stem/progenitor cell subsets in primary AML. CyTOF and conventional FCM yielded comparable results on LSC phenotypes defined by CD45, CD34, CD38, CD123, and CD99. Intracellular phosphoprotein responses to ex vivo cell signaling inhibitors and cytokine stimulation were assessed in myeloid leukemia cell lines and one primary AML sample. CyTOF and conventional FCM results were confirmed by western blotting. In the primary AML sample, we investigated the cell responses to ex vivo stimulation with stem cell factor and BEZ235-induced inhibition of PI3K and identified activation patterns in multiple PI3K downstream signaling pathways including p-4EBP1, p-AKT, and p-S6, particularly in CD34(+) subsets. We evaluated multiple signaling pathways in antigen-defined subpopulations in primary AML cells with FLT3-ITD mutations. The data demonstrated the heterogeneity of cell phenotype distribution and distinct patterns of signaling activation across AML samples and between AML and normal samples. The mTOR targets p-4EBP1 and p-S6 were exclusively found in FLT3-ITD stem/progenitor cells, but not in their normal counterparts, suggesting both as novel targets in FLT3 mutated AML. Our data suggest that CyTOF can identify functional signaling pathways in antigen-defined subpopulations in primary AML, which may provide a rationale for designing therapeutics targeting LSC-enriched cell populations.