Project description:Improving feed efficiency is an important target for poultry breeding. Feed efficiency is affected by host genetics and the gut microbiota, but many of the mechanisms remain elusive in laying hens, especially in the late laying period. In this study, we measured feed intake, body weight, and egg mass of 714 hens from a pedigreed line from 69 to 72 wk of age and calculated the residual feed intake (RFI) and feed conversion ratio (FCR). In addition, fecal samples were also collected for 16S ribosomal RNA gene sequencing (V4 region). Genetic analysis was then conducted in DMU packages by using AI-REML with animal model. Moderate heritability estimates for FCR (h2 = 0.31) and RFI (h2 = 0.52) were observed, suggesting that proper selection programs can directly improve feed efficiency. Genetically, RFI was less correlated with body weight and egg mass than that of FCR. The phenotypic variance explained by gut microbial variance is defined as the microbiability (m2). The microbiability estimates for FCR (m2 = 0.03) and RFI (m2 = 0.16) suggested the gut microbiota was also involved in the regulation of feed efficiency. In addition, our results showed that the effect of host genetics on fecal microbiota was minor in three aspects: 1) microbial diversity indexes had low heritability estimates, and genera with heritability estimates more than 0.1 accounted for only 1.07% of the tested fecal microbiota; 2) the genetic relationship correlations between host genetics and different microbial distance were very weak, ranging from -0.0057 to -0.0003; 3) the microbial distance between different kinships showed no significant difference. Since the RFI has the highest microbiability, we further screened out three genera, including Anaerosporobacter, Candidatus Stoquefichus, and Fournierella, which were negatively correlated with RFI and played positive roles in improving the feed efficiency. These findings contribute to a great understanding of the genetic background and microbial influences on feed efficiency.
Project description:The objective of this study was to establish a low-bacteria intestinal model in chickens, and then to investigate the characteristics involving in immune function and intestinal environment of this model. A total of 180 twenty-one-week-old Hy-line gray layers were randomly allocated into 2 treatment groups. Hens were fed with a basic diet (Control), or an antibiotic combination diet (ABS) for 5 weeks. Results showed that the total bacteria in the ileal chyme were significantly dropped after ABS treatment. Compared with the Control group, the genus-level bacteria such as Romboutsia, Enterococcus, and Aeriscardovia were reduced in the ileal chyme of the ABS group (P < 0.05). In addition, the relative abundance of Lactobacillus_delbrueckii, Lactobacillus_aviarius, Lactobacillus_gasseri, and Lactobacillus_agilis in the ileal chyme were also descended (P < 0.05). However, Lactobacillus_coleohominis, Lactobacillus_salivarius, and Lolium_perenne were elevated in the ABS group (P < 0.05). Beyond that, ABS treatment decreased the levels of interleukin-10 (IL-10) and β-defensin 1 in the serum, as well as the number of goblet cells in the ileal villi (P < 0.05). Additionally, the genes mRNA levels of the ileum such as Mucin2, Toll-like receptors 4 (TLR4), Myeloid differentiation factor 88 (MYD88), NF-κB, IL-1β, Interferon-gama (IFN-γ), IL-4 and the ratio of IFN-γ to IL-4 were also down-regulated in the ABS group (P < 0.05). In addition, there were no significant changes about egg production rate and egg quality in the ABS group. In conclusion, dietary supplemental antibiotic combination for 5 weeks could establish a low intestinal bacteria model of hens. The establishment of a low intestinal bacteria model did not affect the egg-laying performance, while caused immune suppression in laying hens.
Project description:Poor feed efficiency (FE) in hens impacts body weight (BW) and may reflect suboptimal health. Fatty Liver Haemorrhagic Syndrome (FLHS) is mostly observed in laying hens and affects egg production and hen performance. The aim of this study was to investigate the relationships of FE and BW with organ characteristics, liver composition and incidence of FLHS of 150 individually housed ISA Brown hens ranked on the basis of feed conversion ratio (FCR) attained from early lay. At 45 weeks, 10 birds per FE group (HFE-High feed efficient; MFE-medium feed efficient; LFE-low feed efficient) were randomly selected and euthanized. Hen BW was positively associated with feed intake and FCR. The HFE hens had a lower abdominal fat pad and liver weight compared to LFE hens. FLHS lesion score was higher (worse) in the LFE than HFE hen group and was moderately positively associated with BW and abdominal fat pad, but strongly positively associated with liver weight. Liver pathology of LFE hens showed hepatocytes with abnormal retention of lipids causing distended cytoplasmic vacuoles compared to the HFE hens. Hens which exhibited poorer FE in early lay had heavier abdominal fat pads, heavier, fatter livers and were more prone to FLHS.
Project description:The aim of this paper was to investigate the effect of heat stress on the regulation of appetite-associated genes in laying hens. Forty eight laying hens were randomly divided into two circumstances: high (31 ± 1.5°C; relative humidity, 82.0 ± 2.2%) or normal (20 ± 2°C, control; relative humidity, 60.1 ± 4.5%) ambient environment. Heat stress decreased body weight gain (P < 0.01), feed intake (P < 0.01), laying rate (P < 0.05), average egg mass (P < 0.01), egg production (P < 0.01), shell thickness (P < 0.01), and feed efficiency (P < 0.05). High ambient temperature decreased plasma uric acid (P < 0.05). Heat stress significantly increased mRNA levels of ghrelin and cocaine- and amphetamine-regulated transcript (P < 0.05) and decreased mRNA levels of cholecystokinin (P < 0.05) in the hypothalamus. Heat stress significantly increased (P < 0.05) mRNA levels of ghrelin in the glandular stomach and jejunum but significantly decreased (P < 0.05) mRNA levels of cholecystokinin in the duodenum and jejunum. In conclusion, heat stress plays a unique role in some special neuropeptides (e.g., ghrelin, cocaine- and amphetamine-regulated transcript, and cholecystokinin), which might participate in the regulation of feed intake in laying hens under high ambient temperature.
Project description:Climate change is increasingly manifesting in temperate regions. Laying hens are highly sensitive to heat stress and mitigation strategies should be implemented to reduce the negative effects. The goal of this experiment was to evaluate the effects of betaine in drinking water (0.55 g/L) and 4 h feed restriction during peak heat stress on laying performance, egg quality, blood gas parameters, body temperature (Tb), and oxidative stress in 2 different breeds of laying hens. Therefore, 448 ISA Brown hens (25 wk) and 448 Lohmann LSL classic laying hens (26 wk) were housed in 128 cages (7 hens/cage). Thermoneutral (TN) data was collected for 21 d before cyclic heat stress (HS) (21d; 32 ± 2°C; 6 h daily). During HS, hens were divided into 4 treatments: 1) feed restriction (FR), 2) betaine supplementation in drinking water (BET), 3) feed restriction and betaine supplementation in drinking water (FR-BET), or 4) control (CON). The effects were evaluated after 1 wk of HS (acute heat stress; AHS) and 3 wk of HS (chronic heat stress; CHS). Laying rate and egg mass (EM) diminished during CHS but decreased more in white than brown hens (2.78% and 1.94%; -1.57% and -0.81%, respectively; P = 0.004) and remained unaltered by BET or FR. During AHS, average daily feed intake (ADFI) increased compared to TN, but the increase was higher in white than brown hens (6.36% and 2.62%, respectively; P = 0.001). Egg shell quality deteriorated during AHS and CHS, but was most affected in white hens, FR or BET did not impact this. Blood pCO2, HCO3- and base excess significantly decreased during AHS and CHS, but pH and iCa were unaltered. Blood glucose increased in white hens during AHS compared to TN (P < 0.001), while plasma malondialdehyde increased in brown hens (P < 0.001). Results indicated that laying hens experienced HS, but breed differences were observed and white hens were generally most affected. FR affected feed conversion ratio negatively during CHS. However, FR and BET could not improve laying performance, egg quality, Tb, or blood parameters during HS.
Project description:Worldwide, farm animals are kept on litter or foraging substrate that becomes increasingly soiled throughout the production cycle. For animals like laying hens, this means that it is likely they would scratch, forage and consume portions of excreta found in the litter or foraging substrate. However, no study has investigated the relative preference of laying hens for foraging and consumption of feed mixed with different percentages of excreta. A total of 48 White Leghorn laying hens of two strains, a commercial strain (Lohmann LSL-Lite (LSL), n=24) and UCD-003 strain (susceptible to liver damage, n=24), were individually housed and given access to feed mixed with increasing percentages of hen excreta (0%, 33%, 66% and 100% excreta diets) and corn as a luxury food reward (four corn kernels per diet daily). The amount of substrate and number of corn kernels consumed from each diet was recorded for a period of 3 weeks. Both LSL and UCD-003 hens preferred to consume and forage in diets with 0% excreta, followed by 33% and finally diets containing 66% and 100% excreta. Despite the presence of excreta-free diets, birds consumed on average 61.3 g per day of the diets containing excreta. Neither physical health, measured by plasma enzyme activity levels, nor cognitive differences, assessed by recalling a visual discrimination task, was associated with relative feeding or foraging preference. In conclusion, this study demonstrated a clear preference for feeding and foraging on substrate without excreta in laying hens. However, considering the amount of excreta diets consumed, further studies are needed to understand the causes and consequences of excreta consumption on physiological and psychological functioning, and how this information can be used to allow adjustments in the management of foraging substrates in farmed birds.
Project description:The aim of this study was to investigate the effects of puerarin (Pue), a phytoestrogen, on the production performance, egg quality, endocrine hormones, antioxidant capacity, and intestinal morphology in aged laying hens. A total of 180 Hy-Line Brown hens aged 480 d were randomly divided into 4 groups (n = 45 per group) and fed 0, 200, 400, and 800 mg/kg of Pue (Con, L-Pue, M-Pue, and H-Pue, respectively) during a 42-d experiment. Compared with the Con treatment, supplementation with H-Pue improved laying performance and egg quality by significantly increasing egg production, average egg weight, albumen height, yolk weight, and Haugh unit (P < 0.05) while decreasing the feed conversion ratio (P < 0.05). A diet supplemented with H-Pue significantly decreasing serum total triglycerides, total cholesterol, and low-density lipoprotein cholesterol, alanine aminotransferase (P < 0.05), and significantly increasing serum levels of follicle-stimulating hormone, luteinizing hormone and progesterone (P < 0.05). Antioxidant activity was improved by significantly increasing the activity of total antioxidant capacity, glutathione peroxidase and catalase but decreasing malondialdehyde levels in serum, jejunum, and ileum (P < 0.05), and superoxide dismutase activity exhibited a significantly increase in the jejunum and ileum (P < 0.05). Villus height and the ratio of villus height to crypt depth (P < 0.05) were significantly increased in the jejunum and ileum. In the jejunal and ileal mucosa, the three treatment groups increased the mRNA expression levels of Claudin-1 and Claudin-2 compared with Con (P < 0.05), and no significant effect was observed on the expression of Occludin and ZO-1. The results showed that dietary supplementation with Pue could improve the laying performance, egg quality, antioxidant capacity, hormonal profile, and intestinal morphology of aged laying hens.
Project description:Slow-growing Korat chicken (KR) is an alternative to broiler chickens that has been used as a national tool to support smallholder farmers due to a higher selling price of KR meat. However, the individual variability of feed efficiency (FE) within a KR stockbreeding results in a lack of competitiveness. Therefore, improvement of FE of KR is of major importance to improve the profitability of livestock production enterprises. Here, we selected two groups of KR with divergent feed conversion ratios (FCR). We performed RNA-sequencing in order to profile KR jejunal transcriptome and to identify the transcriptional variations and biological pathways implied in response to divergent FCR. The biological pathways involved were revealed by enrichment of the Gene Ontology (GO) terms, and the Kyoto Encyclopedia of Gene and Genome (KEGG) pathways. The results showed that main pathways involved in KR FCR divergence were related to immune response, glutathione metabolism, vitamin transport and metabolism, lipid metabolism, and maturation, development and growth. This is the first study to investigate the molecular genetic mechanisms affecting the FCR values in jejunum of slow-growing chicken. This study will be useful in the line-breeding programs for slow growing chickens to improve FE in the stockbreeding and its profitability.