Project description:Epigenetic modifications are key regulators of gene expression and underpin genome integrity. Yet, how epigenetic changes affect the evolution and transcriptional robustness of genes remains largely unknown. Here, we show how the repressive histone mark H3K27me3 underpins the trajectory of highly conserved genes in fungi. We first performed transcriptomic profiling on closely related species of the plant pathogen Fusarium graminearum species complex. We determined transcriptional responsiveness of genes across environmental conditions to determine expression robustness. To infer evolutionary conservation, we used a framework of 23 species across the Fusarium genus including three species covered with histone methylation data. Gene expression variation is negatively correlated with gene conservation confirming that highly conserved genes show higher expression robustness. In contrast, genes marked by H3K27me3 do not show such associations. Furthermore, highly conserved genes marked by H3K27me3 encode smaller proteins, exhibit weaker codon usage bias, higher levels of hydrophobicity, show lower intrinsically disordered regions, and are enriched for functions related to regulation and membrane transport. The evolutionary age of conserved genes with H3K27me3 histone marks falls typically within the origins of the Fusarium genus. We show that highly conserved genes marked by H3K27me3 are more likely to be dispensable for survival during host infection. Lastly, we show that conserved genes exposed to repressive H3K27me3 marks across distantly related Fusarium fungi are associated with transcriptional perturbation at the microevolutionary scale. In conclusion, we show how repressive histone marks are entangled in the evolutionary fate of highly conserved genes across evolutionary timescales.
Project description:The host range of parasites is an important factor in assessing the dynamics of disease epidemics. The evolution of pathogens to accommodate new hosts may lead to host range expansion, a process the molecular bases of which are largely enigmatic. The fungus Sclerotinia sclerotiorum has been reported to parasitize more than 400 plant species from diverse eudicot families while its close relative, S. trifoliorum, is restricted to plants from the Fabaceae family. We analyzed S. sclerotiorum global transcriptome reprogramming on hosts from six botanical families and reveal a flexible, host-specific transcriptional program. We generated a chromosome-level genome assembly for S. trifoliorum and found near-complete gene space conservation in two representative strains of broad and narrow host range Sclerotinia species. However, S. trifoliorum showed increased sensitivity to the Brassicaceae defense compound camalexin. Comparative analyses revealed a lack of transcriptional response to camalexin in the S. trifoliorum strain and suggest that regulatory variation in detoxification and effector genes at the population level may associate with the genetic accommodation of Brassicaceae in the Sclerotinia host range. Our work proposes transcriptional plasticity and the co-existence of signatures for generalist and polyspecialist adaptive strategies in the genome of a plant pathogen.
Project description:Microbial pathogens induce or inhibit death of host cells during infection, with significant consequences for virulence and disease progression. Death of an infected host cell can either facilitate release and dissemination of intracellular pathogens or promote pathogen clearance. Histoplasma capsulatum is an intracellular fungal pathogen that replicates robustly within macrophages and triggers macrophage lysis by unknown means. To identify H. capsulatum effectors of macrophage lysis, we performed a genetic screen and discovered three mutants that grew to wild-type levels within macrophages but failed to elicit host-cell death. Each mutant was defective in production of the previously identified secreted protein Cbp1 (calcium-binding protein 1), whose role in intracellular growth had not been fully investigated. We found that Cbp1 was dispensable for high levels of intracellular growth but required to elicit a unique transcriptional signature in macrophages, including genes whose induction was previously associated with endoplasmic reticulum stress and host-cell death. Additionally, Cbp1 was required for activation of cell-death caspases-3/7, and macrophage death during H. capsulatum infection was dependent on the pro-apoptotic proteins Bax and Bak. Taken together, these findings strongly suggest that the ability of Cbp1 to actively program host-cell death is an essential step in H. capsulatum pathogenesis.
Project description:Fungi exhibit a large variety of morphological forms. Here, we examine the functions of a deeply conserved regulator of morphology in three fungal species: Saccharomyces cerevisiae, Candida albicans, and Histoplasma capsulatum. We show that, despite an estimated 600 million years since those species diverged from a common ancestor, Wor1 in C. albicans, Ryp1 in H. capsulatum, and Mit1 in S. cerevisiae are transcriptional regulators that recognize the same DNA sequence. Previous work established that Wor1 regulates white-opaque switching in C. albicans and that its ortholog Ryp1 regulates the yeast to mycelial transition in H. capsulatum. Here we show that the ortholog Mit1 in S. cerevisiae is also a master regulator of a morphological transition, in this case pseudohyphal growth. Full-genome chromatin immunoprecipitation experiments show that Mit1 binds to the control regions of the previously known regulators of pseudohyphal growth as well as those of many additional genes. Through a comparison of binding sites for Mit1 in S. cerevisiae, Wor1 in C. albicans, and Wor1 ectopically expressed in S. cerevisiae, we conclude that the genes controlled by the orthologous regulators overlap only slightly between these two species despite the fact that the DNA binding specificity of the regulators has remained largely unchanged. We suggest that the ancestral Wor1/Mit1/Ryp1 protein controlled aspects of cell morphology and that movement of genes in and out of the Wor1/Mit1/Ryp1 regulon is responsible, in part, for the differences of morphological forms among these species.
Project description:Tailoring transcriptional regulation to coordinate the expression of virulence factors in tandem with the core genome is a hallmark of bacterial pathogen evolution. Bacteria encode hundreds of transcription factors forming the base-level control of gene regulation. Moreover, highly homologous regulators are assumed to control conserved genes between members within a species that harbor the same genetic targets. We have explored this concept in 2 Escherichia coli pathotypes that employ distinct virulence mechanisms that facilitate specification of a different niche within the host. Strikingly, we found that the transcription factor YhaJ actively regulated unique gene sets between intestinal enterohemorrhagic E. coli (EHEC) and extraintestinal uropathogenic E. coli (UPEC), despite being very highly conserved. In EHEC, YhaJ directly activates expression of type 3 secretion system components and effectors. Alternatively, YhaJ enhances UPEC virulence regulation by binding directly to the phase-variable type 1 fimbria promoter, driving its expression. Additionally, YhaJ was found to override the universal GAD acid tolerance system but exclusively in EHEC, thereby indirectly enhancing type 3 secretion pleiotropically. These results have revealed that within a species, conserved regulators are actively repurposed in a "personalized" manner to benefit particular lifestyles and drive virulence via multiple distinct mechanisms.
Project description:The specific binding of regulatory proteins to DNA sequences exhibits no clear patterns of association between amino acids (AAs) and nucleotides (NTs). This complexity of protein-DNA interactions raises the question of whether a simple set of wide-coverage recognition rules can ever be identified. Here, we analyzed this issue using the extensive LacI family of transcriptional factors (TFs). We searched for recognition patterns by introducing a new approach to phylogenetic footprinting, based on the pervasive presence of local regulation in prokaryotic transcriptional networks. We identified a set of specificity correlations--determined by two AAs of the TFs and two NTs in the binding sites--that is conserved throughout a dominant subgroup within the family regardless of the evolutionary distance, and that act as a relatively consistent recognition code. The proposed rules are confirmed with data of previous experimental studies and by events of convergent evolution in the phylogenetic tree. The presence of a code emphasizes the stable structural context of the LacI family, while defining a precise blueprint to reprogram TF specificity with many practical applications.
Project description:Invasive fungal disease (IFD) poses a significant threat to immunocompromised patients and remains a global challenge due to limited treatment options, high mortality and morbidity rates, and the emergence of drug-resistant strains. Despite advancements in antifungal agents and diagnostic techniques, the lack of effective vaccines, standardized diagnostic tools, and efficient antifungal drugs contributes to the ongoing impact of invasive fungal infections (IFI). Recent studies have highlighted the presence of extracellular vesicles (EVs) released by fungi carrying various components such as enzymes, lipids, nucleic acids, and virulence proteins, which play roles in both physiological and pathological processes. These fungal EVs have been shown to interact with the host immune system during the development of fungal infections whereas their functional role and potential application in patients are not yet fully understood. This review summarizes the current understanding of the biologically relevant findings regarding EV in host-pathogen interaction, and aim to describe our knowledge of the roles of EV as diagnostic tools and vaccine vehicles, offering promising prospects for the treatment of IFI patients.
Project description:Botrytis cinerea is an agriculturally notorious plant-pathogenic fungus with a broad host range. During plant colonization, B. cinerea secretes a wide range of plant-cell-wall-degrading enzymes (PCWDEs) that help in macerating the plant tissue, but their role in pathogenicity has been unclear. Here, we report on the identification of a transcription factor, BcXyr1, that regulates the production of (hemi-)cellulases and is necessary for fungal virulence. Deletion of the bcxyr1 gene led to impaired spore germination and reduced fungal virulence and reactive oxygen species (ROS) production in planta. Secreted proteins collected from the bcxyr1 deletion strain displayed a weaker cell-death-inducing effect than the wild-type secretome when infiltrated to Nicotiana benthamiana leaves. Transcriptome sequencing (RNA-seq) analysis revealed 41 genes with reduced expression in the Δbcxyr1 mutant compared with those in the wild-type strain, of which half encode secreted proteins that are particularly enriched in carbohydrate-active enzyme (CAZyme)-encoding genes. Among them, we identified a novel putative expansin-like protein that was necessary for fungal virulence, supporting the involvement of BcXyr1 in the regulation of extracellular virulence factors. IMPORTANCE PCWDEs are considered important components of the virulence arsenal of necrotrophic plant pathogens. However, despite intensive research, the role of PCWDEs in the pathogenicity of necrotrophic phytopathogenic fungi remains ambiguous. Here, we demonstrate that the transcription factor BcXyr1 regulates the expression of a specific set of secreted PCWDE-encoding genes and that it is essential for fungal virulence. Furthermore, we identified a BcXyr1-regulated expansin-like gene that is required for fungal virulence. Our findings provide strong evidence for the importance of PCWDEs in the pathogenicity of B. cinerea and highlight specific PCWDEs that might be more important than others.
Project description:Fungal effector-host sensitivity gene interactions play a key role in determining the outcome of septoria nodorum blotch disease (SNB) caused by Parastagonospora nodorum on wheat. The pathosystem is complex and mediated by interaction of multiple fungal necrotrophic effector-host sensitivity gene systems. Three effector sensitivity gene systems are well characterized in this pathosystem; SnToxA-Tsn1, SnTox1-Snn1 and SnTox3-Snn3. We tested a wheat mapping population that segregated for Snn1 and Snn3 with SN15, an aggressive P. nodorum isolate that produces SnToxA, SnTox1 and SnTox3, to study the inheritance of sensitivity to SnTox1 and SnTox3 and disease susceptibility. Interval quantitative trait locus (QTL) mapping showed that the SnTox1-Snn1 interaction was paramount in SNB development on both seedlings and adult plants. No effect of the SnTox3-Snn3 interaction was observed under SN15 infection. The SnTox3-Snn3 interaction was however, detected in a strain of SN15 in which SnTox1 had been deleted (tox1-6). Gene expression analysis indicates increased SnTox3 expression in tox1-6 compared with SN15. This indicates that the failure to detect the SnTox3-Snn3 interaction in SN15 is due - at least in part - to suppressed expression of SnTox3 mediated by SnTox1. Furthermore, infection of the mapping population with a strain deleted in SnToxA, SnTox1 and SnTox3 (toxa13) unmasked a significant SNB QTL on 2DS where the SnTox2 effector sensitivity gene, Snn2, is located. This QTL was not observed in SN15 and tox1-6 infections and thus suggesting that SnToxA and/or SnTox3 were epistatic. Additional QTLs responding to SNB and effectors sensitivity were detected on 2AS1 and 3AL.
Project description:Microbial breakdown of organic matter is one of the most important processes on Earth, yet the controls of decomposition are poorly understood. Here we track 36 terrestrial human cadavers in three locations and show that a phylogenetically distinct, interdomain microbial network assembles during decomposition despite selection effects of location, climate and season. We generated a metagenome-assembled genome library from cadaver-associated soils and integrated it with metabolomics data to identify links between taxonomy and function. This universal network of microbial decomposers is characterized by cross-feeding to metabolize labile decomposition products. The key bacterial and fungal decomposers are rare across non-decomposition environments and appear unique to the breakdown of terrestrial decaying flesh, including humans, swine, mice and cattle, with insects as likely important vectors for dispersal. The observed lockstep of microbial interactions further underlies a robust microbial forensic tool with the potential to aid predictions of the time since death.