Project description:Complex genomic rearrangements (CGRs) consisting of two or more breakpoint junctions have been observed in genomic disorders. Recently, a chromosome catastrophe phenomenon termed chromothripsis, in which numerous genomic rearrangements are apparently acquired in one single catastrophic event, was described in multiple cancers. Here, we show that constitutionally acquired CGRs share similarities with cancer chromothripsis. In the 17 CGR cases investigated, we observed localization and multiple copy number changes including deletions, duplications, and/or triplications, as well as extensive translocations and inversions. Genomic rearrangements involved varied in size and complexities; in one case, array comparative genomic hybridization revealed 18 copy number changes. Breakpoint sequencing identified characteristic features, including small templated insertions at breakpoints and microhomology at breakpoint junctions, which have been attributed to replicative processes. The resemblance between CGR and chromothripsis suggests similar mechanistic underpinnings. Such chromosome catastrophic events appear to reflect basic DNA metabolism operative throughout an organism's life cycle.
Project description:Cancer genomes are frequently characterized by numerical and structural chromosomal abnormalities. Here we integrated a centromere-specific inactivation approach with selection for a conditionally essential gene, a strategy termed CEN-SELECT, to systematically interrogate the structural landscape of mis-segregated chromosomes. We show that single-chromosome mis-segregation into a micronucleus can directly trigger a broad spectrum of genomic rearrangement types. Cytogenetic profiling revealed that mis-segregated chromosomes exhibit 120-fold-higher susceptibility to developing seven major categories of structural aberrations, including translocations, insertions, deletions, and complex reassembly through chromothripsis coupled to classical non-homologous end joining. Whole-genome sequencing of clonally propagated rearrangements identified random patterns of clustered breakpoints with copy-number alterations resulting in interspersed gene deletions and extrachromosomal DNA amplification events. We conclude that individual chromosome segregation errors during mitotic cell division are sufficient to drive extensive structural variations that recapitulate genomic features commonly associated with human disease.
Project description:Complex chromosomal rearrangements are rare events compatible with survival, consisting of an imbalance and/or position effect of one or more genes, that contribute to a range of clinical presentations. The investigation and diagnosis of these cases are often difficult. The interpretation of the pattern of pairing and segregation of these chromosomes during meiosis is important for the assessment of the risk and the type of imbalance in the offspring. Here, we investigated two unrelated pediatric carriers of complex rearrangements of chromosome 7. The first case was a 2-year-old girl with a severe phenotype. Conventional cytogenetics evidenced a duplication of part of the short arm of chromosome 7. By array-CGH analysis, we found a complex rearrangement with three discontinuous trisomy regions (7p22.1p21.3, 7p21.3, and 7p21.3p15.3). The second case was a newborn investigated for hypodevelopment and dimorphisms. The karyotype analysis promptly revealed a structurally altered chromosome 7. The array-CGH analysis identified an even more complex rearrangement consisting of a trisomic region at 7q11.23q22 and a tetrasomic region of 4.5 Mb spanning 7q21.3 to q22.1. The mother's karyotype examination revealed a complex rearrangement of chromosome 7: the 7q11.23q22 region was inserted in the short arm at 7p15.3. Finally, array-CGH analysis showed a trisomic region that corresponds to the tetrasomic region of the son. Our work proved that the integration of several technical solutions is often required to appropriately analyze complex chromosomal rearrangements in order to understand their implications and offer appropriate genetic counseling.
Project description:Copy number variation (CNV) is a major source of genetic variation among humans. In addition to existing as benign polymorphisms, CNVs can also convey clinical phenotypes, including genomic disorders, sporadic diseases and complex human traits. CNV results from genomic rearrangements that can represent simple deletion or duplication of a genomic segment, or be more complex. Complex chromosomal rearrangements (CCRs) have been known for some time but their mechanisms have remained elusive. Recent technology advances and high-resolution human genome analyses have revealed that complex genomic rearrangements can account for a large fraction of non-recurrent rearrangements at a given locus. Various mechanisms, most of which are DNA-replication-based, for example fork stalling and template switching (FoSTeS) and microhomology-mediated break-induced replication (MMBIR), have been proposed for generating such complex genomic rearrangements and are probably responsible for CCR.
Project description:Deletions in chromosome 17q12 encompassing the HNF1 beta gene cause cystic renal disease and maturity onset diabetes of the young, and have been recently described as the first recurrent genomic deletion leading to diabetes. Earlier reports of patients with this microdeletion syndrome have suggested an absence of cognitive impairment, differentiating it from most other contiguous gene deletion syndromes. The reciprocal duplication of 17q12 is rare and has been hypothesized to be associated with an increased risk of epilepsy and mental retardation. We conducted a detailed clinical and molecular characterization of four patients with a deletion and five patients with a reciprocal duplication of this region. Our patients with deletion of 17q12 presented with cognitive impairment, cystic renal disease, seizures, and structural abnormalities of the brain. Patients with reciprocal duplications manifest with cognitive impairment and behavioral abnormalities, but not with seizures. Our findings expand the phenotypic spectrum associated with rearrangements of 17q12 and show that cognitive impairment is a part of the phenotype of individuals with deletions of 17q12.
Project description:Duplications of the Xq28 chromosome region resulting in functional disomy are associated with a distinct clinical phenotype characterized by infantile hypotonia, severe developmental delay, progressive neurological impairment, absent speech, and proneness to infections. Increased expression of the dosage-sensitive MECP2 gene is considered responsible for the severe neurological impairments observed in affected individuals. Although cytogenetically visible duplications of Xq28 are well documented in the published literature, recent advances using array comparative genomic hybridization (CGH) led to the detection of an increasing number of microduplications spanning MECP2. In rare cases, duplication results from intrachromosomal rearrangement between the X and Y chromosomes. We report six cases with sex chromosome rearrangements involving duplication of MECP2. Cases 1-4 are unbalanced rearrangements between X and Y, resulting in MECP2 duplication. The additional Xq material was translocated to Yp in three cases (cases 1-3), and to the heterochromatic region of Yq12 in one case (case 4). Cases 5 and 6 were identified by array CGH to have a loss in copy number at Xp and a gain in copy number at Xq28 involving the MECP2 gene. In both cases, fluorescent in situ hybridization (FISH) analysis revealed a recombinant X chromosome containing the duplicated material from Xq28 on Xp, resulting from a maternal pericentric inversion. These cases add to a growing number of MECP2 duplications that have been detected by array CGH, while demonstrating the value of confirmatory chromosome and FISH studies for the localization of the duplicated material and the identification of complex rearrangements.
Project description:PurposeAlthough chromosome 21 is the smallest human chromosome, it is highly relevant in the pathogenicity of both cancer and congenital diseases, including Alzheimer disease and trisomy 21 (Down syndrome). In addition, cases with rare structural variants (SVs) of chromosome 21 have been reported. These events vary in size and include large chromosomal events, such as ring chromosomes and small partial aneuploidies. The p-arm of the acrocentric chromosome 21 was devoid of reference genomic sequence in GRCh37 and GRCh38, which hampered our ability to solve genomic rearrangements and find the mechanism of formation of disease-causing SVs. We hypothesize that conserved satellite structures and segmental duplications located on the p-arm play an important role in the formation of complex SVs involving chromosome 21.MethodsThree cases with complex chromosome 21 rearrangements were studied with a combination of short-read and long-read genome sequencing, as well as optical genome mapping. The data were aligned to the T2T-CHM13 assembly.ResultsWe were able to resolve all 3 complex chromosome 21 rearrangements in which 15, 8, and 26 breakpoints were identified, respectively. By comparing the identified SV breakpoints, we were able to pinpoint a region between 21p13 and 21p12 that appears to be frequently involved in chromosome 21 rearrangements. Importantly, we observed acrocentric satellite DNA at several breakpoint junctions suggesting an important role for those elements in the formation of complex SVs.ConclusionTaken together, our results provide further insights into the architecture and underlying mechanisms of complex rearrangements on acrocentric chromosomes.
Project description:BACKGROUND:Segmental duplicons (SDs) predispose to an increased frequency of chromosomal rearrangements. These rearrangements can cause a diverse range of phenotypes due to haploinsufficiency, in cis positional effects or gene interruption. Genomic microarray analysis has revealed gene dosage changes adjacent to duplicons, but the high degree of similarity between duplicon sequences has confounded unequivocal assignment of chromosome breakpoints within these intervals. In this study, we localize rearrangements within duplicon-enriched regions of Angelman/Prader-Willi (AS/PWS) syndrome chromosomal deletions with fluorescence in situ hybridization (FISH). RESULTS:Breakage intervals in AS deletions were localized recursively with short, coordinate-defined, single copy (SC) and low copy (LC) genomic FISH probes. These probes were initially coincident with duplicons and regions of previously reported breakage in AS/PWS. Subsequently, probes developed from adjacent genomic intervals more precisely delineated deletion breakage intervals involving genes, pseudogenes and duplicons in 15q11.2q13. The observed variability in the deletion boundaries within previously described Class I and Class II deletion AS samples is related to the local genomic architecture in this chromosomal region. CONCLUSIONS:Chromosome 15 abnormalities associated with SDs were precisely delineated at a resolution equivalent to genomic Southern analysis. This context-dependent approach can define the boundaries of chromosome rearrangements for other genomic disorders associated with SDs.
Project description:The genomic alterations associated with cancers are numerous and varied, involving both isolated and large-scale complex genomic rearrangements (CGRs). Although the underlying mechanisms are not well understood, CGRs have been implicated in tumorigenesis. Here, we introduce CouGaR, a novel method for characterizing the genomic structure of amplified CGRs, leveraging both depth of coverage (DOC) and discordant pair-end mapping techniques. We applied our method to whole-genome sequencing (WGS) samples from The Cancer Genome Atlas and identify amplified CGRs in at least 5.2% (10+ copies) to 17.8% (6+ copies) of the samples. Furthermore, ∼95% of these amplified CGRs contain genes previously implicated in tumorigenesis, indicating the importance and widespread occurrence of CGRs in cancers. Additionally, CouGaR identified the occurrence of 'chromoplexy' in nearly 63% of all prostate cancer samples and 30% of all bladder cancer samples. To further validate the accuracy of our method, we experimentally tested 17 predicted fusions in two pediatric glioma samples and validated 15 of these (88%) with precise resolution of the breakpoints via qPCR experiments and Sanger sequencing, with nearly perfect copy count concordance. Additionally, to further help display and understand the structure of CGRs, we have implemented CouGaR-viz, a generic stand-alone tool for visualization of the copy count of regions, breakpoints, and relevant genes.