Project description:Characterizing an odor quality is difficult for humans. Ever-increasing physiological and behavioral studies have characterized odor quality and demonstrated high performance of human odor categorization. However, there are no precise methods for measuring the multidimensional axis of an odor quality. Furthermore, it can be altered by individual experience, even when using existing measurement methods for the multidimensional axis of odor such as odor profiling. It is, therefore, necessary to characterize patterns of odor quality with odor profiling and observe alterations in odor profiles under the influence of subjective rating conditions such as verbal cues. Considering the high performance of human odor categorization, we hypothesized that odor may have specific odor quality that is scarcely altered by verbal cues. We assessed odor responses to isovaleric acid with and without verbal cues and compared the results in each stimulation condition. We found that verbal cues influenced the rating of odor quality descriptors. Verbal cues weakly influenced the odor quality descriptors of high-rated value (upper 25%) compared to odor quality descriptors of low-rated value (lower 75%) by the survey test. Even under different verbal cue conditions, the same odor was classified in the same class when using high-rated odor quality descriptors. Our study suggests that people extract essential odor quality descriptors that represent the odor itself in order to efficiently quantify odor quality.
Project description:Unlike other animal species, domesticated pet dogs reliably use a range of human communicative cues to find a hidden reward in the object-choice task. One explanation for this finding is that dogs evolved skills for understanding human communicative behaviour during and as a result of human domestication. However, contrary to this domestication hypothesis, Udell et al. found domesticated shelter dogs failed to locate a hidden reward using a human's distal point cue, a cue pet dogs easily use. Hare et al., however, suggested the unorthodox methods used in Udell et al.'s object-choice task resulted in the shelter dogs failing to use human cues. In support of this, Hare et al. found that shelter dogs could use a human communicative pointing cue when tested with a standard object-choice task method. Yet in contrast to Udell et al., Hare at al. used a much simpler proximal cue that cannot exclude success based on stimulus enhancement rather than an understanding of the cue's communicative nature. We therefore addressed this issue by testing shelter dogs' abilities to use a range of proximal and distal human communicative cues in a standard object-choice task. We found shelter dogs could use proximal cues that may involve stimulus enhancement, but they continuously failed to use distal cues that excluded this possibility. Object-choice tasks with dogs typically involve non-vocalised human cues. We tested if vocalising would help shelter dogs to use distal cues. We found shelter dogs could use a vocalised distal continuous cue when the subject's name was called during cue presentation. It is therefore possible that vocalised cues help domesticated dogs learn about non-vocalised human communicative cues. Overall our results do not support that domesticated dogs' understanding of human communicative cues is a direct result of the domestication process.
Project description:Certain motion cues like self-propulsion and speed changes allow human and nonhuman animals to quickly detect animate beings. In the current eye-tracking study, we examined whether dogs' (Canis familiaris) pupil size was influenced by such motion cues. In Experiment 1, dogs watched different videos with normal or reversed playback direction showing a human agent releasing an object. The reversed playback gave the impression that the objects were self-propelled. In Experiment 2, dogs watched videos of a rolling ball that either moved at constant or variable speed. We found that the dogs' pupil size only changed significantly over the course of the videos in the conditions with self-propelled (upward) movements (Experiment 1) or variable speed (Experiment 2). Our findings suggest that dogs orient toward self-propelled stimuli that move at variable speed, which might contribute to their detection of animate beings.
Project description:Neuroimaging studies of speech perception have consistently indicated a left-hemisphere dominance in the temporal lobes' responses to intelligible auditory speech signals (McGettigan and Scott, 2012). However, there are important communicative cues that cannot be extracted from auditory signals alone, including the direction of the talker's gaze. Previous work has implicated the superior temporal cortices in processing gaze direction, with evidence for predominantly right-lateralized responses (Carlin & Calder, 2013). The aim of the current study was to investigate whether the lateralization of responses to talker gaze differs in an auditory communicative context. Participants in a functional MRI experiment watched and listened to videos of spoken sentences in which the auditory intelligibility and talker gaze direction were manipulated factorially. We observed a left-dominant temporal lobe sensitivity to the talker's gaze direction, in which the left anterior superior temporal sulcus/gyrus and temporal pole showed an enhanced response to direct gaze - further investigation revealed that this pattern of lateralization was modulated by auditory intelligibility. Our results suggest flexibility in the distribution of neural responses to social cues in the face within the context of a challenging speech perception task.
Project description:Domesticated species are often composed of distinct populations differing in the character and strength of artificial and natural selection pressures, providing a valuable model to study adaptation. In contrast to pure-breed dogs that constitute artificially maintained inbred lines, free-ranging dogs are typically free-breeding, i.e., unrestrained in mate choice. Many traits in free-breeding dogs (FBDs) may be under similar natural and sexual selection conditions to wild canids, while relaxation of sexual selection is expected in pure-breed dogs. We used a Bayesian approach with strict false-positive control criteria to identify FST-outlier SNPs between FBDs and either European or East Asian breeds, based on 167,989 autosomal SNPs. By identifying outlier SNPs located within coding genes, we found four candidate genes under diversifying selection shared by these two comparisons. Three of them are associated with the Hedgehog (HH) signaling pathway regulating vertebrate morphogenesis. A comparison between FBDs and East Asian breeds also revealed diversifying selection on the BBS6 gene, which was earlier shown to cause snout shortening and dental crowding via disrupted HH signaling. Our results suggest that relaxation of natural and sexual selection in pure-breed dogs as opposed to FBDs could have led to mild changes in regulation of the HH signaling pathway. HH inhibits adhesion and the migration of neural crest cells from the neural tube, and minor deficits of these cells during embryonic development have been proposed as the underlying cause of "domestication syndrome." This suggests that the process of breed formation involved the same genetic and developmental pathways as the process of domestication.
Project description:Most studies on dogs' olfactory performance focused only on some individuals pre-trained for a task or on specially selected/trained detection dogs. Here, using the Natural Detection Task (NDT) that does not require training, we assessed the effect of several potential factors on the performance of a large sample of dogs (N = 527/tested, 484/analysed). Olfactory success was associated with breeds, but breed groups (selected for olfaction, cooperation, or both) were proven non-relevant, suggesting that breed-specific traits are more influential than functional breed group characteristics. Border collies, selected for herding, reached higher success levels than golden retrievers, Hungarian/German vizslas and basset/bloodhounds, selected for hunting/olfaction tasks. Beagles found the hidden food quicker than border collies, basset/bloodhounds, golden retrievers, Labradors, and cocker spaniels. Dogs with higher Responsiveness to training personality scores were more successful, while higher training level linked to slower successful search. Activity/Excitability scores, attention-deficit/hyperactivity disorder scores, and owners' rewarding style were not associated with performance. Overall, large within-breed/breed-group variabilities reflect complex interactions between genetic and environmental factors influencing performance. Given the complex nature of life-like detection tasks, the NDT may provide more information about dogs' olfactory ability than on their potential effectiveness in detection work.
Project description:It is still largely unknown to what extent domestication, ancestry, or recent functional selection are responsible for the behavioral differences in whether dogs look back to a human when presented with a difficult task. Here, we tested whether this ubiquitous human-related response of companion dogs would appear differently in subjects that were selected for either cooperative or independent work tasks. We tested N = 71 dogs from 18 cooperative and 18 independent breeds. Subjects learned in a five-trial warming-up phase that they could easily obtain the reward from a container. In trial six, the reward became impossible to take out from the locked container. When the task was easy, both breed groups behaved similarly, and their readiness to approach the container did not differ between the last 'solvable' and the subsequent 'unsolvable' trial. Task focus, looking at the container, touching the container for the first time, or interacting with the container with a paw or nose did not differ between the breed groups, indicating that their persistence in problem solving was similar. However, in the 'unsolvable' trial, cooperative dogs alternated their gaze more often between the container and the humans than the independent dogs did. The frequency of looking back was also higher in cooperative dogs than in the independent breeds. These are the first empirical results that suggest, in a balanced, representative sample of breeds, that the selection for different levels of cooperativity in working dogs could also affect their human-dependent behavior in a generic problem-solving situation.
Project description:Humans possess a unique ability to communicate spatially-relevant information, yet the intersection between language and navigation remains largely unexplored. One possibility is that verbal cues accentuate heuristics useful for coding spatial layouts, yet this idea remains largely untested. We test the idea that verbal cues flexibly accentuate the coding of heuristics to remember spatial layouts via spatial boundaries or landmarks. The alternative hypothesis instead conceives of encoding during navigation as a step-wise process involving binding lower-level features, and thus subsequently formed spatial representations should not be modified by verbal cues. Across three experiments, we found that verbal cues significantly affected pointing error patterns at axes that were aligned with the verbally cued heuristic, suggesting that verbal cues influenced the heuristics employed to remember object positions. Further analyses suggested evidence for a hybrid model, in which boundaries were encoded more obligatorily than landmarks, but both were accessed flexibly with verbal instruction. These findings could not be accounted for by a tendency to spend more time facing the instructed component during navigation, ruling out an attentional-encoding mechanism. Our findings argue that verbal cues influence the heuristics employed to code environments, suggesting a mechanism for how humans use language to communicate navigationally-relevant information.
Project description:During everyday social interaction, gestures are a fundamental part of human communication. The communicative pragmatic role of hand gestures and their interaction with spoken language has been documented at the earliest stage of language development, in which two types of indexical gestures are most prominent: the pointing gesture for directing attention to objects and the give-me gesture for making requests. Here we study, in adult human participants, the neurophysiological signatures of gestural-linguistic acts of communicating the pragmatic intentions of naming and requesting by simultaneously presenting written words and gestures. Already at ~150 ms, brain responses diverged between naming and request actions expressed by word-gesture combination, whereas the same gestures presented in isolation elicited their earliest neurophysiological dissociations significantly later (at ~210 ms). There was an early enhancement of request-evoked brain activity as compared with naming, which was due to sources in the frontocentral cortex, consistent with access to action knowledge in request understanding. In addition, an enhanced N400-like response indicated late semantic integration of gesture-language interaction. The present study demonstrates that word-gesture combinations used to express communicative pragmatic intentions speed up the brain correlates of comprehension processes - compared with gesture-only understanding - thereby calling into question current serial linguistic models viewing pragmatic function decoding at the end of a language comprehension cascade. Instead, information about the social-interactive role of communicative acts is processed instantaneously.
Project description:Inbreeding is a common phenomenon in small, fragmented or isolated populations, typical conditions of many threatened species. In the present paper, we used a new non-invasive approach based on the buccal micronucleus assay to evaluate the possible relationships between inbreeding and genomic damage using the dog as model species. In particular, we assessed the frequencies of micronuclei and other nuclear aberrations in a group of purebred dogs (n = 77), comparing the obtained data with those from a control group represented by mixed breed dogs (n = 75). We found a significant increase of micronuclei, nuclear buds and total nuclear aberrations frequencies in purebred dogs compared to mixed-bred dogs. The absence of significant differences in the frequency of micronuclei and other nuclear aberrations amongst different breeds reinforces the hypothesis that the observed increased genomic damage amongst purebred dogs may not be due to a different genomic instability typical of a particular breed, but to inbreeding itself. This hypothesis is further confirmed by the fact that other endogen confounding factors, such as sex, age and weight, do not contribute significantly to the increase of genomic damage observed amongst purebred dogs. In conclusion, results presented in this study showed that, in purebred dogs, inbreeding may increase the levels of genomic damage. Considering that genomic damage is associated with increased physiological problems affecting animal health, the results we obtained may represent a stimulus to discourage the use of intensive inbreeding practices in captive populations and to reduce the fragmentation of wild populations.