Project description:Although deep learning architecture has been used to process sequential data, only a few studies have explored the usefulness of deep learning algorithms to detect glaucoma progression. Here, we proposed a bidirectional gated recurrent unit (Bi-GRU) algorithm to predict visual field loss. In total, 5413 eyes from 3321 patients were included in the training set, whereas 1272 eyes from 1272 patients were included in the test set. Data from five consecutive visual field examinations were used as input; the sixth visual field examinations were compared with predictions by the Bi-GRU. The performance of Bi-GRU was compared with the performances of conventional linear regression (LR) and long short-term memory (LSTM) algorithms. Overall prediction error was significantly lower for Bi-GRU than for LR and LSTM algorithms. In pointwise prediction, Bi-GRU showed the lowest prediction error among the three models in most test locations. Furthermore, Bi-GRU was the least affected model in terms of worsening reliability indices and glaucoma severity. Accurate prediction of visual field loss using the Bi-GRU algorithm may facilitate decision-making regarding the treatment of patients with glaucoma.
Project description:With the development of recent years, the field of deep learning has made great progress. Compared with the traditional machine learning algorithm, deep learning can better find the rules in the data and achieve better fitting effect. In this paper, we propose a hybrid stock forecasting model based on Feature Selection, Convolutional Neural Network and Bidirectional Gated Recurrent Unit (FS-CNN-BGRU). Feature Selection (FS) can select the data with better performance for the results as the input data after data normalization. Convolutional Neural Network (CNN) is responsible for feature extraction. It can extract the local features of the data, pay attention to more local information, and reduce the amount of calculation. The Bidirectional Gated Recurrent Unit (BGRU) can process the data with time series, so that it can have better performance for the data with time series attributes. In the experiment, we used single CNN, LSTM and GRU models and mixed models CNN-LSTM, CNN-GRU and FS-CNN-BGRU (the model used in this manuscript). The results show that the performance of the hybrid model (FS-CNN-BGRU) is better than other single models, which has a certain reference value.
Project description:The global pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has generated tremendous concern and poses a serious threat to international public health. Phosphorylation is a common post-translational modification affecting many essential cellular processes and is inextricably linked to SARS-CoV-2 infection. Hence, accurate identification of phosphorylation sites will be helpful to understand the mechanisms of SARS-CoV-2 infection and mitigate the ongoing COVID-19 pandemic. In the present study, an attention-based bidirectional gated recurrent unit network, called IPs-GRUAtt, was proposed to identify phosphorylation sites in SARS-CoV-2-infected host cells. Comparative results demonstrated that IPs-GRUAtt surpassed both state-of-the-art machine-learning methods and existing models for identifying phosphorylation sites. Moreover, the attention mechanism made IPs-GRUAtt able to extract the key features from protein sequences. These results demonstrated that the IPs-GRUAtt is a powerful tool for identifying phosphorylation sites. For facilitating its academic use, a freely available online web server for IPs-GRUAtt is provided at http://cbcb.cdutcm.edu.cn/phosphory/.
Project description:Human Action Recognition (HAR) is an essential topic in computer vision and artificial intelligence, focused on the automatic identification and categorization of human actions or activities from video sequences or sensor data. The goal of HAR is to teach machines to comprehend and interpret human movements, gestures, and behaviors, allowing for a wide range of applications in areas such as surveillance, healthcare, sports analysis, and human-computer interaction. HAR systems utilize a variety of techniques, including deep learning, motion analysis, and feature extraction, to capture and analyze the spatiotemporal characteristics of human actions. These systems have the capacity to distinguish between various actions, whether they are simple actions like walking and waving or more complex activities such as playing a musical instrument or performing sports maneuvers. HAR continues to be an active area of research and development, with the potential to enhance numerous real-world applications by providing machines with the ability to understand and respond to human actions effectively. In our study, we developed a HAR system to recognize actions in tennis using an attention-based gated recurrent unit (GRU), a prevalent recurrent neural network. The combination of GRU architecture and attention mechanism showed a significant improvement in prediction power compared to two other deep learning models. Our models were trained on the THETIS dataset, one of the standard medium-sized datasets for fine-grained tennis actions. The effectiveness of the proposed model was confirmed by three different types of image encoders: InceptionV3, DenseNet, and EfficientNetB5. The models developed with InceptionV3, DenseNet, and EfficientNetB5 achieved average ROC-AUC values of 0.97, 0.98, and 0.81, respectively. While, the models obtained average PR-AUC values of 0.84, 0.87, and 0.49 for InceptionV3, DenseNet, and EfficientNetB5 features, respectively. The experimental results confirmed the applicability of our proposed method in recognizing action in tennis and may be applied to other HAR problems.
Project description:Winning football matches is the major goal of all football clubs in the world. Football being the most popular game in the world, many studies have been conducted to analyze and predict match winners based on players' physical and technical performance. In this study, we analyzed the matches from the professional football league of Qatar Stars League (QSL) covering the matches held in the last ten seasons. We incorporated the highest number of professional matches from the last ten seasons covering from 2011 up to 2022 and proposed SoccerNet, a Gated Recurrent Unit (GRU)-based deep learning-based model to predict match winners with over 80% accuracy. We considered match- and player-related information captured by STATS platform in a time slot of 15 minutes. Then we analyzed players' performance at different positions on the field at different stages of the match. Our results indicated that in QSL, the defenders' role in matches is more dominant than midfielders and forwarders. Moreover, our analysis suggests that the last 15-30 minutes of match segments of the matches from QSL have a more significant impact on the match result than other match segments. To the best of our knowledge, the proposed model is the first DL-based model in predicting match winners from any professional football leagues in the Middle East and North Africa (MENA) region. We believe the results will support the coaching staff and team management for QSL in designing game strategies and improve the overall quality of performance of the players.
Project description:Predicting novel uses for drugs using their chemical, pharmacological, and indication information contributes to minimizing costs and development periods. Most previous prediction methods focused on integrating the similarity and association information of drugs and diseases. However, they tended to construct shallow prediction models to predict drug-associated diseases, which make deeply integrating the information difficult. Further, path information between drugs and diseases is important auxiliary information for association prediction, while it is not deeply integrated. We present a deep learning-based method, CGARDP, for predicting drug-related candidate disease indications. CGARDP establishes a feature matrix by exploiting a variety of biological premises related to drugs and diseases. A novel model based on convolutional neural network (CNN) and gated recurrent unit (GRU) is constructed to learn the local and path representations for a drug-disease pair. The CNN-based framework on the left of the model learns the local representation of the drug-disease pair from their feature matrix. As the different paths have discriminative contributions to the drug-disease association prediction, we construct an attention mechanism at the path level to learn the informative paths. In the right part, a GRU-based framework learns the path representation based on path information between the drug and the disease. Cross-validation results indicate that CGARDP performs better than several state-of-the-art methods. Further, CGARDP retrieves more real drug-disease associations in the top part of the prediction result that are of concern to biologists. Case studies on five drugs demonstrate that CGARDP can discover potential drug-related disease indications.
Project description:The ongoing fast-paced technology trend has brought forth ceaseless transformation. In this regard, cloud computing has long proven to be the paramount deliverer of services such as computing power, software, networking, storage, and databases on a pay-per-use basis. The cloud is a big proponent of the internet of things (IoT), furnishing the computation and storage requisite to address internet-of-things applications. With the proliferating IoT devices triggering a continual data upsurge, the cloud-IoT interaction encounters latency, bandwidth, and connectivity restraints. The inclusion of the decentralized and distributed fog computing layer amidst the cloud and IoT layer extends the cloud's processing, storage, and networking services close to end users. This hierarchical edge-fog-cloud model distributes computation and intelligence, yielding optimal solutions while tackling constraints like massive data volume, latency, delay, and security vulnerability. The healthcare domain, warranting time-critical functionalities, can reap benefits from the cloud-fog-IoT interplay. This research paper propounded a fog-assisted smart healthcare system to diagnose heart or cardiovascular disease. It combined a fuzzy inference system (FIS) with the recurrent neural network model's variant of the gated recurrent unit (GRU) for pre-processing and predictive analytics tasks. The proposed system showcases substantially improved performance results, with classification accuracy at 99.125%. With major processing of healthcare data analytics happening at the fog layer, it is observed that the proposed work reveals optimized results concerning delays in terms of latency, response time, and jitter, compared to the cloud. Deep learning models are adept at handling sophisticated tasks, particularly predictive analytics. Time-critical healthcare applications reap benefits from deep learning's exclusive potential to furnish near-perfect results, coupled with the merits of the decentralized fog model, as revealed by the experimental results.
Project description:BackgroundAnnotating scientific literature with ontology concepts is a critical task in biology and several other domains for knowledge discovery. Ontology based annotations can power large-scale comparative analyses in a wide range of applications ranging from evolutionary phenotypes to rare human diseases to the study of protein functions. Computational methods that can tag scientific text with ontology terms have included lexical/syntactic methods, traditional machine learning, and most recently, deep learning.ResultsHere, we present state of the art deep learning architectures based on Gated Recurrent Units for annotating text with ontology concepts. We use the Colorado Richly Annotated Full Text Corpus (CRAFT) as a gold standard for training and testing. We explore a number of additional information sources including NCBI's BioThesauraus and Unified Medical Language System (UMLS) to augment information from CRAFT for increasing prediction accuracy. Our best model results in a 0.84 F1 and semantic similarity.ConclusionThe results shown here underscore the impact for using deep learning architectures for automatically recognizing ontology concepts from literature. The augmentation of the models with biological information beyond that present in the gold standard corpus shows a distinct improvement in prediction accuracy.
Project description:The Boolean satisfiability (SAT) problem exhibits different structural features in various domains. Neural network models can be used as more generalized algorithms that can be learned to solve specific problems based on different domain data than traditional rule-based approaches. How to accurately identify these structural features is crucial for neural networks to solve the SAT problem. Currently, learning-based SAT solvers, whether they are end-to-end models or enhancements to traditional heuristic algorithms, have achieved significant progress. In this article, we propose TG-SAT, an end-to-end framework based on Transformer and gated recurrent neural network (GRU) for predicting the satisfiability of SAT problems. TG-SAT can learn the structural features of SAT problems in a weakly supervised environment. To capture the structural information of the SAT problem, we encodes a SAT problem as an undirected graph and integrates GRU into the Transformer structure to update the node embeddings. By computing cross-attention scores between literals and clauses, a weighted representation of nodes is obtained. The model is eventually trained as a classifier to predict the satisfiability of the SAT problem. Experimental results demonstrate that TG-SAT achieves a 2%-5% improvement in accuracy on random 3-SAT problems compared to NeuroSAT. It also outperforms in SR(N), especially in handling more complex SAT problems, where our model achieves higher prediction accuracy.
Project description:Genome-wide pervasive transcription has been reported in many eukaryotic organisms, revealing a highly interleaved transcriptome organization that involves hundreds of previously unknown non-coding RNAs. These recently identified transcripts either exist stably in cells (stable unannotated transcripts, SUTs) or are rapidly degraded by the RNA surveillance pathway (cryptic unstable transcripts, CUTs). One characteristic of pervasive transcription is the extensive overlap of SUTs and CUTs with previously annotated features, which prompts questions regarding how these transcripts are generated, and whether they exert function. Single-gene studies have shown that transcription of SUTs and CUTs can be functional, through mechanisms involving the generated RNAs or their generation itself. So far, a complete transcriptome architecture including SUTs and CUTs has not been described in any organism. Knowledge about the position and genome-wide arrangement of these transcripts will be instrumental in understanding their function. Here we provide a comprehensive analysis of these transcripts in the context of multiple conditions, a mutant of the exosome machinery and different strain backgrounds of Saccharomyces cerevisiae. We show that both SUTs and CUTs display distinct patterns of distribution at specific locations. Most of the newly identified transcripts initiate from nucleosome-free regions (NFRs) associated with the promoters of other transcripts (mostly protein-coding genes), or from NFRs at the 3' ends of protein-coding genes. Likewise, about half of all coding transcripts initiate from NFRs associated with promoters of other transcripts. These data change our view of how a genome is transcribed, indicating that bidirectionality is an inherent feature of promoters. Such an arrangement of divergent and overlapping transcripts may provide a mechanism for local spreading of regulatory signals-that is, coupling the transcriptional regulation of neighbouring genes by means of transcriptional interference or histone modification.