Project description:During the present study three type 1 poliovirus strains isolated in Greece during the 1996 poliomyelitis outbreak in Albania were retrospectively investigated and determination of their relationship with other epidemic strains isolated in Albania or elsewhere during previous epidemics was attempted. SimPlot analysis revealed that the three Greek strains are the result of a recombination event in the VP2 coding region.
Project description:Between April and December 1996, a serious outbreak of poliomyelitis occurred in Albania; almost 140 subjects were involved, and the episode presented an unusually high mortality rate (12%). During the outbreak, water samples from the Lana River in Tirana, Albania, and stool samples from two cases of paralytic poliomyelitis were collected and analyzed for the presence of polioviruses. Six polioviruses were isolated from the environmental and human samples, according to standard methods. All the samples were characterized by partial genomic sequencing of 330 bases across the 5' untranslated region (5'-UTR) (nucleotide positions 200 to 530) and of 300 bases across the VP1 region (nucleotide positions 2474 to 2774). Comparison of these sequences with those present in data banks permitted the identification of environmental isolates Lana A and Lana B as, respectively, a Sabin-like type 2 poliovirus and an intertypic recombinant poliovirus (Sabin-like type 2/wild type 1), both bearing a G instead of an A at nucleotide position 481. The two other environmental polioviruses were similar to the isolates from the paralytic cases. They were characterized by a peculiar 5'-UTR and by a VP1 region showing 98% homology with the Albanian epidemic type 1 isolates reported by other authors. This study confirms the environmental circulation in Albania of recombinant poliovirus strains, likely sustained by a massive vaccination effort and by the presence in the environment of a type 1 poliovirus, as isolated from the Lana River in Tirana about 2 months before the first case of symptomatic acute flaccid paralysis was reported in this town.
Project description:During the 2014-2015 outbreak of Ebola virus disease in Guinea, 13 type 2 circulating vaccine-derived polioviruses (cVDPVs) were isolated from 6 polio patients and 7 healthy contacts. To clarify the genetic properties of cVDPVs and their emergence, we combined epidemiologic and virologic data for polio cases in Guinea. Deviation of public health resources to the Ebola outbreak disrupted polio vaccination programs and surveillance activities, which fueled the spread of neurovirulent VDPVs in an area of low vaccination coverage and immunity. Genetic properties of cVDPVs were consistent with their capacity to cause paralytic disease in humans and capacity for sustained person-to-person transmission. Circulation ceased when coverage of oral polio vaccine increased. A polio outbreak in the context of the Ebola virus disease outbreak highlights the need to consider risks for polio emergence and spread during complex emergencies and urges awareness of the challenges in polio surveillance, vaccination, and diagnosis.
Project description:Type 1 wild-vaccine recombinant polioviruses sharing a 367-nucleotide (nt) block of Sabin 1-derived sequence spanning the VP1 and 2A genes circulated widely in China from 1991 to 1993. We surveyed the sequence relationships among 34 wild-vaccine recombinants by comparing six genomic intervals: the conserved 5'-untranslated region (5'-UTR) (nt 186 to 639), the hypervariable portion of the 5'-UTR (nt 640 to 742), the VP4 and partial VP2 genes (nt 743 to 1176), the VP1 gene (nt 2480 to 3385), the 2A gene (nt 3386 to 3832), and the partial 3D gene (nt 6011 to 6544). The 5'-UTR, capsid (VP4-VP2 and VP1), and 2A sequence intervals had similar phylogenies. By contrast, the partial 3D sequences could be distributed into five divergent genetic classes. Most (25 of 34) of the wild-vaccine recombinant isolates showed no evidence of additional recombination beyond the initial wild-Sabin recombination event. Eight isolates from 1992 to 1993, however, appear to be derived from three independent additional recombination events, and one 1993 isolate was derived from two consecutive events. Complete genomic sequences of a representative isolate for each 3D sequence class demonstrated that these exchanges had occurred in the 2B, 2C, and 3D genes. The 3D gene sequences were not closely related to those of the Sabin strains or 53 diverse contemporary wild poliovirus isolates from China, but all were related to the 3D genes of species C enteroviruses. The appearance within approximately 2.5 years of five recombinant classes derived from a single ancestral infection illustrates the rapid emergence of new recombinants among circulating wild polioviruses.
Project description:Since 2005, a large poliomyelitis outbreak associated with type 2 circulating vaccine-derived poliovirus (cVDPV2) has occurred in northern Nigeria, where immunization coverage with trivalent oral poliovirus vaccine (tOPV) has been low. Phylogenetic analysis of P1/capsid region sequences of isolates from each of the 403 cases reported in 2005 to 2011 resolved the outbreak into 23 independent type 2 vaccine-derived poliovirus (VDPV2) emergences, at least 7 of which established circulating lineage groups. Virus from one emergence (lineage group 2005-8; 361 isolates) was estimated to have circulated for over 6 years. The population of the major cVDPV2 lineage group expanded rapidly in early 2009, fell sharply after two tOPV rounds in mid-2009, and gradually expanded again through 2011. The two major determinants of attenuation of the Sabin 2 oral poliovirus vaccine strain (A481 in the 5'-untranslated region [5'-UTR] and VP1-Ile143) had been replaced in all VDPV2 isolates; most A481 5'-UTR replacements occurred by recombination with other enteroviruses. cVDPV2 isolates representing different lineage groups had biological properties indistinguishable from those of wild polioviruses, including efficient growth in neuron-derived HEK293 cells, the capacity to cause paralytic disease in both humans and PVR-Tg21 transgenic mice, loss of the temperature-sensitive phenotype, and the capacity for sustained person-to-person transmission. We estimate from the poliomyelitis case count and the paralytic case-to-infection ratio for type 2 wild poliovirus infections that ∼700,000 cVDPV2 infections have occurred during the outbreak. The detection of multiple concurrent cVDPV2 outbreaks in northern Nigeria highlights the risks of cVDPV emergence accompanying tOPV use at low rates of coverage in developing countries.
Project description:Polioviruses are positive-sense, single-stranded RNA picornaviruses and the principal cause of poliomyelitis. Global poliovirus surveillance has relied on poliovirus isolation in cells, which may take a minimum of 10 days, involves maintaining two cell lines, and propagates virus in high titers. With eradication underway, a major objective of the Global Polio Eradication Initiative (GPEI) is to develop culture-independent detection of polioviruses as an alternative method to complement the current virus isolation technique. A culture-independent method on poliovirus-positive stool suspensions was assessed with commercially available recombinant soluble poliovirus receptor (PVR) coupled to Histidine (His) tags. Viral RNA was screened by quantitative real-time reverse transcription PCR using the poliovirus intratypic differentiation kit. Poliovirus recovery was optimized with PVR-His-tagged protein and buffers supplemented with polyethylene glycol. To validate the poliovirus-PVR-His tag purification assay, 182 poliovirus-positive stools of programmatic importance were parallel tested against the GPLN-accepted virus isolation method. The PVR-His tag enrichment method detected poliovirus in 164 of 171 poliovirus-positive stools, whereas the virus isolation method misidentified 38 stools as poliovirus-negative (McNemar χ2 p<0.0001). Using this method in combination with RNA extraction, viral RNA recovery increased and showed similar (WPV1) or higher (Sabin 1) sensitivity than the World Health Organization accredited variation of the virus isolation method. The PVR-His enrichment method could be a viable addition to poliovirus surveillance; similar methods have the potential to capture other human pathogens such as EV71 using an appropriate soluble His tag receptor.
Project description:The non-medical policies implemented by many countries to "flatten the curve" during the COVID-19 outbreak has people stranded in their homes and some, out of their homes unable to return due to the disruptions in the mobility network. The availability of rich datasets (in our case, Facebook) has made it possible to study the mobility dynamics and spatial distribution of people during lockdown in Italy. Our interpretation is an effort to look deeper, describing the movements occurred during lockdown, including the territorial differences. We observe that, initially, tourists left the country and later Italians abroad managed to return, thereby, stabilising the population. With regards to internal mobility, the earliest affected regions see higher number of stationary users in the initial days of the outbreak while this is less significant for the central/southern regions until the decree for the official lockdown on the 9th of March 2020, due 2 days later. Just before lockdown, there was not a significant exodus of people from the North to the rest of the country, instead, relocation of people between cities and their urban belts, but not towards remote areas. This will be elaborated in conclusions shedding light on possible changes in future cities.