Project description:Cognitive impairments associated with schizophrenia (CIAS) represent a central element of the symptomatology of this severe mental disorder. CIAS substantially determine the disease prognosis and hardly, if at all, respond to treatment with currently available antipsychotics. Remarkably, all drugs presently approved for the treatment of schizophrenia are, to varying degrees, dopamine D2/D3 receptor blockers. In turn, rapidly growing evidence suggests the immense significance of systems other than the dopaminergic system in the genesis of CIAS. Accordingly, current efforts addressing the unmet needs of patients with schizophrenia are primarily based on interventions in other non-dopaminergic systems. In this review article, we provide a brief overview of the available evidence on the importance of specific systems in the development of CIAS. In addition, we describe the promising targets for the development of new drugs that have been used so far. In doing so, we present the most important candidates that have been investigated in the field of the specific systems in recent years and present a summary of the results available at the time of drafting this review (May 2022), as well as the currently ongoing studies.
Project description:There is consistent evidence that the principal etiology of schizophrenia involves predisposing genetic factors. Recent years have seen several new insights in the genetics of schizophrenia. Several chromosomal regions show significant evidence that they contain schizophrenia susceptibility genes. A clinically relevant genetic subtype of schizophrenia (22q deletion syndrome) has been identified. There is new evidence that spontaneous mutations may play a role. There are new recommendations for genetic counseling. The progress to date suggests that understanding of a neurodevelopmental pathway from genetic susceptibility to schizophrenia will soon be fundamentally altered by molecular genetic advances in this complex disease.
Project description:A growing list of common and rare genetic risk variants are being implicated in schizophrenia susceptibility. As with other complex genetic disorders most of the variance in genetic risk is still to be attributed. What can be learned from progress to date? The available data challenges how we conceptualize schizophrenia and suggests strong aetiological links with other psychiatric and developmental disorders. With the identification of rare copy number risk variants implicating specific genes (e.g. VIPR2 and NRXN1) it is increasingly possible to investigate molecular aetiology in patient subgroups to establish whether schizophrenia represents one or many different disease processes. This review summarizes recent research progress and suggests how the tools of modern genomics and neuroscience can be applied to best understand this devastating disorder.
Project description:Triple negative breast cancer (TNBC) is characterized by the lack of estrogen and progesterone receptor expression and lacks HER2 overexpression or gene amplification. It accounts for 10-15% of incident breast cancers and carries the worst prognosis. TNBC is overrepresented among Black and pre-menopausal women and is associated with significant psychological and treatment-related burdens, including financial toxicity. Like other breast cancers, TNBC is biologically heterogeneous, leading to diverse clinical and epidemiological behaviors, however, unlike the other clinical subtypes, in TNBC we still lack tumor-specific targeted therapy. Early TNBC outcomes have improved due to the intensification of therapies, including improvements in polychemotherapy and the addition of immunotherapy. Future efforts are needed to identify targetable aberrations for specific drug therapy, prevent immune evasion, and increase social-economic support. Given that the name TNBC illustrates its lack of specifically targeted and effective therapy, we look forward to being able to retire the name in favor of a group of targetable entities within what is now called "TNBC".
Project description:Lung cancer is the primary cause of mortality in the United States and around the globe. Therapeutic options for lung cancer treatment include surgery, radiation therapy, chemotherapy, and targeted drug therapy. Medical management is often associated with the development of treatment resistance leading to relapse. Immunotherapy is profoundly altering the approach to cancer treatment owing to its tolerable safety profile, sustained therapeutic response due to immunological memory generation, and effectiveness across a broad patient population. Different tumor-specific vaccination strategies are gaining ground in the treatment of lung cancer. Recent advances in adoptive cell therapy (CAR T, TCR, TIL), the associated clinical trials on lung cancer, and associated hurdles are discussed in this review. Recent trials on lung cancer patients (without a targetable oncogenic driver alteration) reveal significant and sustained responses when treated with programmed death-1/programmed death-ligand 1 (PD-1/PD-L1) checkpoint blockade immunotherapies. Accumulating evidence indicates that a loss of effective anti-tumor immunity is associated with lung tumor evolution. Therapeutic cancer vaccines combined with immune checkpoint inhibitors (ICI) can achieve better therapeutic effects. To this end, the present article encompasses a detailed overview of the recent developments in the immunotherapeutic landscape in targeting small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC). Additionally, the review also explores the implication of nanomedicine in lung cancer immunotherapy as well as the combinatorial application of traditional therapy along with immunotherapy regimens. Finally, ongoing clinical trials, significant obstacles, and the future outlook of this treatment strategy are also highlighted to boost further research in the field.
Project description:Advances in critical care practice have led to a substantial decline in the incidence of ARDS over the past several years. Low tidal volume ventilation, timely resuscitation and antimicrobial administration, restrictive transfusion practices, and primary prevention of aspiration and nosocomial pneumonia have likely contributed to this reduction. Despite decades of research, there is no proven pharmacologic treatment of ARDS, and mortality from ARDS remains high. Consequently, recent initiatives have broadened the scope of lung injury research to include targeted prevention of ARDS. Prediction scores have been developed to identify patients at risk for ARDS, and clinical trials testing aspirin and inhaled budesonide/formoterol for ARDS prevention are ongoing. Future trials aimed at preventing ARDS face several key challenges. ARDS has not been validated as an end point for pivotal clinical trials, and caution is needed when testing toxic therapies that may prevent ARDS yet potentially increase mortality.
Project description:The inadequate efficacy and adverse effects of antipsychotics severely affect the recovery of patients with schizophrenia spectrum disorders (SSD). We report the evidence for associations between pharmacogenetic (PGx) variants and antipsychotics outcomes, including antipsychotic response, antipsychotic-induced weight/BMI gain, metabolic syndrome, antipsychotic-related prolactin levels, antipsychotic-induced tardive dyskinesia (TD), clozapine-induced agranulocytosis (CLA), and drug concentration level (pharmacokinetics) in SSD patients. Through an in-depth systematic search in 2010-2022, we identified 501 records. We included 29 meta-analyses constituting pooled data from 298 original studies over 69 PGx variants across 39 genes, 4 metabolizing phenotypes of CYP2D9, and 3 of CYP2C19. We observed weak unadjusted nominal significant (p < 0.05) additive effects of PGx variants of DRD1, DRD2, DRD3, HTR1A, HTR2A, HTR3A, and COMT (10 variants) on antipsychotic response; DRD2, HTR2C, BDNF, ADRA2A, ADRB3, GNB3, INSIG2, LEP, MC4R, and SNAP25 (14 variants) on weight gain; HTR2C (one variant) on metabolic syndrome; DRD2 (one variant) on prolactin levels; COMT and BDNF (two variants) on TD; HLA-DRB1 (one variant) on CLA; CYP2D6 (four phenotypes) and CYP2C19 (two phenotypes) on antipsychotics plasma levels. In the future, well-designed longitudinal naturalistic multi-center PGx studies are needed to validate the effectiveness of PGx variants in antipsychotic outcomes before establishing any reproducible PGx passport in clinical practice.
Project description:Advanced gastroesophageal cancer in which surgical resection is no longer appropriate is an aggressive malignancy with poor prognosis. This review provides an overview of the key trials that have led to the current standard of care, both highlighting progress with systemic cytotoxic and biological therapies, but also calling attention to pitfalls to assist practitioners in optimizing currently available treatments for their patients. This review surveys recent and ongoing trials and biomarker studies regarding the use of anti-HER2 agents, with increased recognition of molecular intratumoral heterogeneity confounding such targeted therapy strategies. We conclude with an overview of recent major trials incorporating immune checkpoint inhibitors among patients with metastatic and locally advanced gastroesophageal cancer and providing a framework for the discriminate application of these new therapies.
Project description:BackgroundMany low- and middle-income countries are not on track to reach the public health targets set out in the Millennium Development Goals (MDGs). We evaluated whether differential progress towards health MDGs was associated with economic development, public health funding (both overall and as percentage of available domestic funds), or health system infrastructure. We also examined the impact of joint epidemics of HIV/AIDS and noncommunicable diseases (NCDs), which may limit the ability of households to address child mortality and increase risks of infectious diseases.Methods and findingsWe calculated each country's distance from its MDG goals for HIV/AIDS, tuberculosis, and infant and child mortality targets for the year 2005 using the United Nations MDG database for 227 countries from 1990 to the present. We studied the association of economic development (gross domestic product [GDP] per capita in purchasing-power-parity), the relative priority placed on health (health spending as a percentage of GDP), real health spending (health system expenditures in purchasing-power-parity), HIV/AIDS burden (prevalence rates among ages 15-49 y), and NCD burden (age-standardised chronic disease mortality rates), with measures of distance from attainment of health MDGs. To avoid spurious correlations that may exist simply because countries with high disease burdens would be expected to have low MDG progress, and to adjust for potential confounding arising from differences in countries' initial disease burdens, we analysed the variations in rates of change in MDG progress versus expected rates for each country. While economic development, health priority, health spending, and health infrastructure did not explain more than one-fifth of the differences in progress to health MDGs among countries, burdens of HIV and NCDs explained more than half of between-country inequalities in child mortality progress (R(2)-infant mortality = 0.57, R(2)-under 5 mortality = 0.54). HIV/AIDS and NCD burdens were also the strongest correlates of unequal progress towards tuberculosis goals (R(2) = 0.57), with NCDs having an effect independent of HIV/AIDS, consistent with micro-level studies of the influence of tobacco and diabetes on tuberculosis risks. Even after correcting for health system variables, initial child mortality, and tuberculosis diseases, we found that lower burdens of HIV/AIDS and NCDs were associated with much greater progress towards attainment of child mortality and tuberculosis MDGs than were gains in GDP. An estimated 1% lower HIV prevalence or 10% lower mortality rate from NCDs would have a similar impact on progress towards the tuberculosis MDG as an 80% or greater rise in GDP, corresponding to at least a decade of economic growth in low-income countries.ConclusionsUnequal progress in health MDGs in low-income countries appears significantly related to burdens of HIV and NCDs in a population, after correcting for potentially confounding socioeconomic, disease burden, political, and health system variables. The common separation between NCDs, child mortality, and infectious syndromes among development programs may obscure interrelationships of illness affecting those living in poor households--whether economic (e.g., as money spent on tobacco is lost from child health expenditures) or biological (e.g., as diabetes or HIV enhance the risk of tuberculosis).
Project description:Type 2 diabetes (T2D) is a complex disease that is caused by a complex interplay between genetic, epigenetic and environmental factors. While the major environmental factors, diet and activity level, are well known, identification of the genetic factors has been a challenge. However, recent years have seen an explosion of genetic variants in risk and protection of T2D due to the technical development that has allowed genome-wide association studies and next-generation sequencing. Today, more than 120 variants have been convincingly replicated for association with T2D and many more with diabetes-related traits. Still, these variants only explain a small proportion of the total heritability of T2D. In this review, we address the possibilities to elucidate the genetic landscape of T2D as well as discuss pitfalls with current strategies to identify the elusive unknown heritability including the possibility that our definition of diabetes and its subgroups is imprecise and thereby makes the identification of genetic causes difficult.