Project description:Heart failure is a major health burden, affecting 40 million people globally. One of the main causes of systolic heart failure is dilated cardiomyopathy (DCM), the leading global indication for heart transplantation. Our understanding of the genetic basis of both DCM and systolic heart failure has improved in recent years with the application of next-generation sequencing and genome-wide association studies (GWAS). This has enabled rapid sequencing at scale, leading to the discovery of many novel rare variants in DCM and of common variants in both systolic heart failure and DCM. Identifying rare and common genetic variants contributing to systolic heart failure has been challenging given its diverse and multiple etiologies. DCM, however, although rarer, is a reasonably specific and well-defined condition, leading to the identification of many rare genetic variants. Truncating variants in titin represent the single largest genetic cause of DCM. Here, we review the progress and challenges in the detection of rare and common variants in DCM and systolic heart failure, and the particular challenges in accurate and informed variant interpretation, and in understanding the effects of these variants. We also discuss how our increasing genetic knowledge is changing clinical management. Harnessing genetic data and translating it to improve risk stratification and the development of novel therapeutics represents a major challenge and unmet critical need for patients with heart failure and their families.
Project description:DNA methylation is one of the best-characterized epigenetic modifications and has been implicated in numerous biological processes, including transposable element silencing, genomic imprinting and X chromosome inactivation. Compared with other epigenetic modifications, DNA methylation is thought to be relatively stable. Despite its role in long-term silencing, DNA methylation is more dynamic than originally thought as active DNA demethylation has been observed during specific stages of development. In the past decade, many enzymes have been proposed to carry out active DNA demethylation and growing evidence suggests that, depending on the context, this process may be achieved by multiple mechanisms. Insight into how DNA methylation is dynamically regulated will broaden our understanding of epigenetic regulation and have great implications in somatic cell reprogramming and regenerative medicine.
Project description:Purpose of reviewDilated cardiomyopathy (DCM), which include genetic and nongenetic forms, is the most common form of cardiomyopathy. DCM is characterized by left ventricular or biventricular dilation with impaired contraction. In the United States, DCM is a burden to healthcare that accounts for approximately 10,000 deaths and 46,000 hospitalizations annually. In this review, we will focus on the genetic forms of DCM and on recent advances in the understanding of cytoskeletal, sarcomeric, desmosomal, nuclear membrane, and RNA binding genes that contribute to the complexity and genetic heterogeneity of DCM.Recent findingsAlthough mutations in TTN remain the most common identifiable cause of genetic DCM, there is a growing appreciation for arrhythmogenic-prone DCM due to mutations in LMNA, desmosomal genes, and the recently described FLNC gene encoding the structural filamin C protein. Mutations in RBM20 highlight the relevance of RNA splicing regulation in the pathogenesis of DCM. Although expanded genetic testing has improved access to genetic diagnostic studies for many patients, the molecular mechanisms in the pathogenesis of the disease remained largely unknown.Summary: The identification of the molecular causes and subsequent insight into the molecular mechanisms of DCM is expanding our understanding of DCM pathogenesis and highlights the complexity of DCM and the need to develop multifaceted strategies to treat the various causes of DCM.
Project description:Dilated cardiomyopathy (DCM) is defined as dilation and/or reduced function of one or both ventricles and remains a common disease worldwide. An estimated 40% of cases of familial DCM have an identifiable genetic cause. Accordingly, there is a fast-growing interest in the field of molecular genetics as it pertains to DCM. Many gene mutations have been identified that contribute to phenotypically significant cardiomyopathy. DCM genes can affect a variety of cardiomyocyte functions, and particular genes whose function affects the cell-cell junction and cytoskeleton are associated with increased risk of arrhythmias and sudden cardiac death. Through advancements in next-generation sequencing and cardiac imaging, identification of genetic DCM has improved over the past couple decades, and precision medicine is now at the forefront of treatment for these patients and their families. In addition to standard treatment of heart failure and prevention of arrhythmias and sudden cardiac death, patients with genetic cardiomyopathy stand to benefit from gene mechanism-specific therapies.
Project description:Peripartum cardiomyopathy (PPCM) is a severe cardiac disease occurring in the last month of pregnancy or in the first 5 months after delivery and shows many similar clinical characteristics as dilated cardiomyopathy (DCM) such as ventricle dilation and systolic dysfunction. While PPCM was believed to be DCM triggered by pregnancy, more and more studies show important differences between these diseases. While it is likely they share part of their pathogenesis such as increased oxidative stress and an impaired microvasculature, discrepancies seen in disease progression and outcome indicate there must be differences in pathogenesis as well. In this review, we compared studies in DCM and PPCM to search for overlapping and deviating disease etiology, pathogenesis and outcome in order to understand why these cardiomyopathies share similar clinical features but have different underlying pathologies.
Project description:Mutations in PKD1 and PKD2, the genes encoding the proteins polycystin-1 (PC1) and polycystin-2 (PC2), cause autosomal dominant polycystic kidney disease (ADPKD). Although the leading cause of mortality in ADPKD is cardiovascular disease, the relationship between these conditions remains poorly understood. PC2 is an intracellular calcium channel expressed in renal epithelial cells and in cardiomyocytes, and is thus hypothesized to modulate intracellular calcium signaling and affect cardiac function. Our first aim was to study cardiac function in a zebrafish model lacking PC2 (pkd2 mutants). Next, we aimed to explore the relevance of this zebrafish model to human ADPKD by examining the Mayo Clinic's ADPKD database for an association between ADPKD and idiopathic dilated cardiomyopathy (IDCM). Pkd2 mutant zebrafish showed low cardiac output and atrioventricular block. Isolated pkd2 mutant hearts displayed impaired intracellular calcium cycling and calcium alternans. These results indicate heart failure in the pkd2 mutants. In human ADPKD patients, we found IDCM to coexist frequently with ADPKD. This association was strongest in patients with PKD2 mutations. Our results demonstrate that PC2 modulates intracellular calcium cycling, contributing to the development of heart failure. In human subjects we found an association between ADPKD and IDCM and suggest that PKD mutations contribute to the development of heart failure.
Project description:Genetics plays an important role in the pathophysiology of cardiovascular diseases, and is increasingly being integrated into clinical practice. Since 2008, both capacity and cost-efficiency of mutation screening of DNA have been increased magnificently due to the technological advancement obtained by next-generation sequencing. Hence, the discovery rate of genetic defects in cardiovascular genetics has grown rapidly and the financial threshold for gene diagnostics has been lowered, making large-scale DNA sequencing broadly accessible. In this review, the genetic variants, mutations and inheritance models are briefly introduced, after which an overview is provided of current clinical and technological applications in gene diagnostics and research for cardiovascular disease and in particular, dilated cardiomyopathy. Finally, a reflection on the future perspectives in cardiogenetics is given.
Project description:End stage heart failure due to ischemic cardiomyopathy (ICM) and dilated cardiomyopathy (DCM) have similar characteristics, enlargement of the ventricles, relatively thin-walled ventricle, which leads to a limited contraction force and blood loading. Nevertheless, the response for present therapeutics is very variable and the prognosis is still very bad for ICM and DCM in general. Thus, the ability to differentiate the etiologies of heart failure based structural and physiological changes of the heart would be a step forward to enhance the specificity and the success of given therapy.