Project description:Combination therapy with three antiretroviral agents has been integral to successful HIV-1 treatment since 1996. Although the efficacy, adverse effects, and toxicities of contemporary three-drug regimens have improved, even the newest therapies have potential adverse effects. The use of two-drug regimens is one way to reduce lifetime exposure to antiretroviral drugs while maintaining the benefits of viral suppression. Multiple large, randomised trials have shown the virological non-inferiority of certain two-drug regimens versus three-drug comparators, including adverse effect differences that reflect known profiles of the antiretroviral drugs in the respective regimens. Two-drug combinations are now recommended in treatment guidelines and include the first long-acting antiretroviral regimen for the treatment of HIV-1. Recommended two-drug regimens differ in their risks for, and factors associated with, virological failure and emergent resistance. The tolerability, safety, metabolic profiles, and drug interactions of two-drug regimens also vary by the constituent drugs. No current two-drug regimen is recommended for people with chronic hepatitis B virus as none include tenofovir. Two-drug regimens have increased options for individualised care.
Project description:The insertion and deletion of U residues at specific sites in mRNAs in trypanosome mitochondria is thought to involve 3' terminal uridylyl transferase (TUTase) activity. TUTase activity is also required to create the nonencoded 3' oligo[U] tails of the transacting guide RNAs (gRNAs). We have described two TUTases, RET1 (RNA editing TUTase 1) and RET2 (RNA editing TUTase 2) as components of different editing complexes. Tandem affinity purification-tagged Trypanosoma brucei RET2 (TbRET2) was expressed and localized to the cytosol in Leishmania tarentolae cells by removing the mitochondrial signal sequence. Double-affinity isolation yielded tagged TbRET2, together with a few additional proteins. This material exhibits a U-specific transferase activity in which a single U is added to the 3' end of a single-stranded RNA, thereby confirming that RET2 is a 3' TUTase. We also found that RNA interference of RET2 expression in T. brucei inhibits in vitro U-insertion editing and has no effect on the length of the 3' oligo[U] tails of the gRNAs, whereas down-regulation of RET1 has a minor effect on in vitro U-insertion editing, but produces a decrease in the average length of the oligo[U] tails. This finding suggests that RET2 is responsible for U-insertions at editing sites and RET1 is involved in gRNA 3' end maturation, which is essential for creating functional gRNAs. From these results we have functionally relabeled the previously described TUT-II complex containing RET1 as the guide RNA processing complex.
Project description:Methane monooxygenase (MMO) enzymes activate O2 for oxidation of methane. Two distinct MMOs exist in nature, a soluble form that uses a diiron active site (sMMO) and a membrane-bound form with a catalytic copper center (pMMO). Understanding the reaction mechanisms of these enzymes is of fundamental importance to biologists and chemists, and is also relevant to the development of new biocatalysts. The sMMO catalytic cycle has been elucidated in detail, including O2 activation intermediates and the nature of the methane-oxidizing species. By contrast, many aspects of pMMO catalysis remain unclear, most notably the nuclearity and molecular details of the copper active site. Here, we review the current state of knowledge for both enzymes, and consider pMMO O2 activation intermediates suggested by computational and synthetic studies in the context of existing biochemical data. Further work is needed on all fronts, with the ultimate goal of understanding how these two remarkable enzymes catalyze a reaction not readily achieved by any other metalloenzyme or biomimetic compound.
Project description:Since the 1970s, eight closely related serotypes of classical human astroviruses (HAstV) have been associated with gastrointestinal illness worldwide. In the late 2000s, three genetically unique human astrovirus clades, VA1-VA3, VA2-VA4, and MLB, were described. While the exact disease associated with these clades remains to be defined, VA1 has been associated with central nervous system infections. The discovery that VA1 could be grown in cell culture, supports exciting new studies aimed at understanding viral pathogenesis. Given the association of VA1 with often lethal CNS infections, we tested its susceptibility to the antimicrobial drug, nitazoxanide (NTZ), which we showed could inhibit classical HAstV infections. Our studies demonstrate that NTZ inhibited VA1 replication in Caco2 cells even when added at 12 h post-infection, which is later than in HAstV-1 infection. These data led us to further probe VA1 replication kinetics and cellular responses to infection in Caco-2 cells in comparison to the well-studied HAstV-1 strain. Overall, our studies highlight that VA1 replicates more slowly than HAstV-1 and elicits significantly different cellular responses, including the inability to disrupt cellular junctions and barrier permeability.
Project description:Structural comparisons between bacteriophage PRD1 and adenovirus have revealed an evolutionary relationship that has contributed significantly to current ideas on virus phylogeny. However, the structural organization of the receptor-binding spike complex and how the different symmetry mismatches are mediated between the spike-complex proteins are not clear. We determined the architecture of the PRD1 spike complex by using electron microscopy and three-dimensional image reconstruction of a series of PRD1 mutants. We constructed an atomic model for the full-length P5 spike protein by using comparative modeling. P5 was shown to be bound directly to the penton base protein P31. P5 and the receptor-binding protein P2 form two separate spikes, interacting with each other near the capsid shell. P5, with a tumor necrosis factor-like head domain, may have been responsible for host recognition before capture of the current receptor-binding protein P2.
Project description:Leigh syndrome is a rare, complex, and incurable early onset (typically infant or early childhood) mitochondrial disorder with both phenotypic and genetic heterogeneity. The heterogeneous nature of this disorder, based in part on the complexity of mitochondrial genetics, and the significant interactions between the nuclear and mitochondrial genomes has made it particularly challenging to research and develop therapies. This review article discusses some of the advances that have been made in the field to date. While the prognosis is poor with no current substantial treatment options, multiple studies are underway to understand the etiology, pathogenesis, and pathophysiology of Leigh syndrome. With advances in available research tools leading to a better understanding of the mitochondria in health and disease, there is hope for novel treatment options in the future.
Project description:Little is known about the genomic alterations in chordoma, with the exception of loss of SMARCB1, a core member of the SWI/SNF complex, in poorly differentiated chordomas. A TBXT duplication and rs2305089 polymorphism, located at 6q27, are known genetic susceptibility loci. A comprehensive genomic analysis of the nuclear and mitochondrial genomes in pediatric chordoma has not yet been reported. In this study, we performed WES and mtDNA genome sequencing on 29 chordomas from 23 pediatric patients. Findings were compared with that from whole-genome sequencing datasets of 80 adult patients with skull base chordoma. In the pediatric chordoma cohort, 81% of the somatic mtDNA mutations were observed in NADH complex genes, which is significantly enriched compared with the rest of the mtDNA genes (P = 0.001). In adult chordomas, mtDNA mutations were also enriched in the NADH complex genes (P < 0.0001). Furthermore, a progressive increase in heteroplasmy of nonsynonymous mtDNA mutations was noted in patients with multiple tumors (P = 0.0007). In the nuclear genome, rare likely germline in-frame indels in ARID1B, a member of the SWI/SNF complex located at 6q25.3, were observed in five pediatric patients (22%) and four patients in the adult cohort (5%). The frequency of rare ARID1B indels in the pediatric cohort is significantly higher than that in the adult cohort (P = 0.0236, Fisher's exact test), but they were both significantly higher than that in the ethnicity-matched populations (P < 5.9e-07 and P < 0.0001174, respectively). Implications: germline ARID1B indels and mtDNA aberrations seem important for chordoma genesis, especially in pediatric chordoma.
Project description:As people live longer with HIV infection, there has been a resurgence of interest in challenging the use of three-drug therapy, including two nucleoside reverse transcriptase inhibitors plus a third drug, as initial treatment of HIV infection or for maintenance therapy in virologically suppressed individuals. Although initial studies showed poor efficacy and/or substantial toxicity, more recent regimens have held greater promise. The SWORD-1 and -2 studies were pivotal trials of dolutegravir plus rilpivirine as maintenance therapy in virologically suppressed patients with no history of drug resistance, leading to the US Food and Drug Administration's approval of the regimen as a small, single tablet. More recently, the GEMINI-1 and -2 studies demonstrated that dolutegravir plus lamivudine is as safe and effective as the same regimen when combined with tenofovir disoproxil fumarate in treatment-naïve individuals. Together, these and other studies of novel two-drug regimens offer the potential for improved tolerability and simplicity, as well as a reduction in cost. We will review historical and recent trials of two-drug therapy for the treatment of HIV-1 infection.