Project description:BackgroundThe Abraham general solvation model can be used in a broad set of scenarios involving partitioning and solubility, yet is limited to a set of solvents with measured Abraham coefficients. Here we extend the range of applicability of Abraham's model by creating open models that can be used to predict the solvent coefficients for all organic solvents.ResultsWe created open random forest models for the solvent coefficients e, s, a, b, and v that had out-of-bag R(2) values of 0.31, 0.77, 0.92, 0.47, and 0.63 respectively. The models were used to suggest sustainable solvent replacements for commonly used solvents. For example, our models predict that propylene glycol may be used as a general sustainable solvent replacement for methanol.ConclusionThe solvent coefficient models extend the range of applicability of the Abraham general solvation equations to all organic solvents. The models were developed under Open Notebook Science conditions which makes them open, reproducible, and as useful as possible. Graphical AbstractChemical space for solvents with known Abraham coefficients.
Project description:Effects from diet-induced gut microbiota dysbiosis and obesity can be ameliorated by fecal microbiota transplantation: a multiomics approach.
Project description:Cohen syndrome was initially described as a syndrome including obesity, hypotonia, mental deficiency, and facial, oral, ocular and limb anomalies. Leukopenia, especially neutropenia, was later described as a feature of Cohen syndrome. Cohen syndrome is caused by an autosomal recessive (AR) mutation of the vacuolar protein sorting 13 homolog B (VPS13B, also referred to as COH1) gene on chromosome 8q22.2.
Project description:The century-old controversy over two contradicting theories on radiation pressure of light proposed by Abraham and Minkowski can come to an end if there is a direct method to measure the surface deformation of the target material due to momentum transfer of photons. Here we have investigated the effect of radiation pressure on the surface morphology of Graphene Oxide (GO) film, experienced due to low power focused laser irradiation. In-depth investigation has been carried out to probe the bending of the GO surface due to radiation pressure by Atomic Force Microscopy (AFM) and subsequently the uniaxial strain induced on the GO film has been probed by Raman Spectroscopy. Our results show GO film experience an inward pressure due to laser radiation resulting in inward bending of the surface, which is consistent with the Abraham theory. The bending diameter and depth of the irradiated spot show linear dependence with the laser power while an abrupt change in depth and diameter of the irradiated spot is observed at the breaking point. Such abrupt change in depth is attributed to the thinning of the GO film by laser irradiation.
Project description:BackgroundCohen syndrome (CS; OMIM 216550) is a rare syndrome with evident clinical heterogeneity. The diverse phenotype comprises early-onset hypotonia and developmental delays, intellectual disabilities, microcephaly, hypermobile joints, neutropenia, myopia, and characteristic facial features. The disease is rarely reported. Vacuolar Protein Sorting 13 Homolog B (VPS13B; OMIM 607817) is the only causative gene of CS.MethodsBlood samples sourced from both siblings and parents were sent to identify mutations by trio-WES, and changes in the patient's condition were understood through consultation data and follow-up.ResultsWe reported two siblings affected by developmental delay, microcephaly, intellectual disability, and facial features. The siblings' WES detected compound heterozygous variants in the exon region of VPS13B (NM_017890): c.9337A>T and c.8551A>C.ConclusionTwo individuals were diagnosed with CS by genetic testing and clinical features. In addition, we conduct a brief review of the reports on the Chinese population with CS and reinforce the understanding of the correlation between genotype-phenotype.
Project description:Enhancing Trypanosomatids Identification and Genotyping with Oxford Nanopore Sequencing: Development and Validation of an 18S rRNAs Amplicon-Based Method.
Project description:To comprehensively analyze the transcriptome of macrophages treated with LPS, anti-CD36 Abs, or LPS plus anti-CD36 Abs, respectively, we employed RNA sequencing (RNA-seq) assay
Project description:BACKGROUND: Trapped Neutrophil Syndrome (TNS) is a common autosomal recessive neutropenia in Border collie dogs. RESULTS: We used a candidate gene approach and linkage analysis to show that the causative gene for TNS is VPS13B. We chose VPS13B as a candidate because of similarities in clinical signs between TNS and Cohen syndrome, in human, such as neutropenia and a typical facial dysmorphism. Linkage analysis using microsatellites close to VPS13B showed positive linkage of the region to TNS. We sequenced each of the 63 exons of VPS13B in affected and control dogs and found that the causative mutation in Border collies is a 4 bp deletion in exon 19 of the largest transcript that results in premature truncation of the protein. Cohen syndrome patients present with mental retardation in 99% of cases, but learning disabilities featured in less than half of TNS affected dogs. It has been implied that loss of the alternate transcript of VPS13B in the human brain utilising an alternate exon, 28, may cause mental retardation. Mice cannot be used to test this hypothesis as they do not express the alternate exon. We show that dogs do express alternate transcripts in the brain utilising an alternate exon homologous to human exon 28. CONCLUSION: Dogs can be used as a model organism to explore the function of the alternately spliced transcript of VPS13B in the brain. TNS in Border collies is the first animal model for Cohen syndrome and can be used to study the disease aetiology.