Project description:Overcoming the Doppler broadening limit is a cornerstone of precision spectroscopy. Nevertheless, the achievement of a Doppler-free regime is severely hampered by the need of high field intensities to saturate absorption transitions and of a high signal-to-noise ratio to detect tiny Lamb-dip features. Here we present a novel comb-assisted spectrometer ensuring over a broad range from 1.5 to 1.63 μm intra-cavity field enhancement up to 1.5 kW/cm(2), which is suitable for saturation of transitions with extremely weak electric dipole moments. Referencing to an optical frequency comb allows the spectrometer to operate with kHz-level frequency accuracy, while an extremely tight locking of the probe laser to the enhancement cavity enables a 10(-11) cm(-1) absorption sensitivity to be reached over 200 s in a purely dc direct-detection-mode at the cavity output. The particularly simple and robust detection and operating scheme, together with the wide tunability available, makes the system suitable to explore thousands of lines of several molecules never observed so far in a Doppler-free regime. As a demonstration, Lamb-dip spectroscopy is performed on the P(15) line of the 01120-00000 band of acetylene, featuring a line-strength below 10(-23) cm/mol and an Einstein coefficient of 5 mHz, among the weakest ever observed.
Project description:A modification of the standard Hong-Ou-Mandel interferometer is proposed which allows one to replicate the celebrated coincidence dip in the case of two-independent delay parameters. In the ideal case where such delays are sufficiently stable with respect to the mean wavelength of the pump source, properly symmetrized input bi-photon states allow one to pinpoint their values through the identification of a zero in the coincidence counts, a feature that cannot be simulated by semiclassical inputs having the same spectral properties. Besides, in the presence of fluctuating parameters the zero in the coincidences is washed away: still the bi-photon state permits to recover the values of parameters with a visibility which is higher than the one allowed by semiclassical sources. The detrimental role of loss and dispersion is also analyzed and an application in the context of quantum positioning is presented.
Project description:Dip pen nanolithography (DPN) involves the direct transfer of an ink from a coated atomic force microscope (AFM) tip to a substrate of interest and uses as many as 55,000 pens to form arbitrary patterns of alkanethiols, oligonucleotides, proteins, and viruses. Two limitations of DPN are the difficulty in transporting high molecular weight inks and the need to optimize individually the transport rates and tip inking methods of each molecule. As an alternative strategy that circumvents these two challenges, a method termed redox activating DPN (RA-DPN) is reported. In this strategy, an electrochemically active, quinone functionalized surface is toggled from the reduced hydroquinone form to the oxidized benzoquinone form by the delivery of an oxidant by DPN. While the benzoquinone form is susceptible to nucleophilic attack in Michael-type additions, hydroquinone is not and acts as a passivating agent. Because both forms of the quinone are kinetically stable, the patterned surface can be immersed in a solution of a target containing any strong nucleophile, which will react only where the benzoquinone form persists on the surface. For proof-of-concept demonstrations, quinone surfaces were patterned by the delivery of the oxidant cerric ammonium nitrate and were immersed in solutions of AF549 labeled cholera toxin beta subunit or oligonucleotides modified at the 5' end with an amine and the 3' end with a fluorophore. Fluorescent patterns of both the proteins and oligonucleotides were observed by epifluorescence microscopy. Additionally, RA-DPN maintains the advantageous ability of DPN to control feature size by varying the dwell time of the tip on the surface, and variation of this parameter has resulted in feature sizes as small as 165 nm. With this resolution, patterns of 50,000 spots could be made in a 100 x 100 microm(2) grid.
Project description:Micromotors have demonstrated values in drug delivery, and recent attempts focus on developing effective approaches to generate functional micromotors to improve this area. Here, with the integration of microfluidic droplet printing and wettability-induced drawing photolithography, we present an innovative spatiotemporal serial multistep dip-printing strategy to generate novel independent microneedle motors (IMNMs) for orally delivering macromolecular drugs. As the strategy combines the advantages of the hydrophilic wettability, extension effects, and capillary effects, the IMNMs with an oblate basement and a needle-shaped head or a core-shell structured multicomponent head can be created by simply printing pregel droplets layer by layer, following with simultaneous wiredrawing and solidification. Owing to the polarized magnetic particles in the bottom basement and the rapidly dissolvable polymers as the middle basement, the resultant IMNMs can respond to magnetic fields, move to desired places under a magnet, penetrate tissue-like substrates, induce head-basement separation, and leave only the needles for cargo release. Based on these features, we have demonstrated that these IMNMs can deliver insulin via intestinal tracts to realize effective blood glucose control of diabetic rabbit models. These results indicate the practical values and bright future of the dip-printing stratagem and these IMNMs in clinical applications.
Project description:Direct nanopatterning of a number of high-melting-temperature molecules has been systematically investigated by dip-pen nanolithography (DPN). By tuning DPN experimental conditions, all of the high-melting-temperature molecules transported smoothly from the atomic force microscope (AFM) tip to the surface at room temperature without tip preheating. Water meniscus formation between the tip and substrate is found to play a critical role in patterning high-melting-temperature molecules. These results show that heating an AFM probe to a temperature above the ink's melting temperature is not a prerequisite for ink delivery, which extends the current "ink-substrate" combinations available to DPN users.
Project description:Many fishes are sensitive to ultraviolet (UV) light and display UV markings during courtship. As UV scatters more than longer wavelengths of light, these signals are only effective at short distances, reducing the risk of detection by swimming predators. Such underwater scattering will be insignificant for dip and plunge diving birds, which prey on fishes just below the water surface. One could therefore expect to find adaptations in the eyes of dip and plunge diving birds that tune colour reception to UV signals. We used a molecular method to survey the colour vision tuning of five families of dip or plunge divers and compared the results with those from sister taxa of other foraging methods. We found evidence of extended UV vision only in gulls (Laridae). Based on available evidence, it is more probable that this trait is associated with their terrestrial foraging habits rather than piscivory.
Project description:The application of graphene in sensor devices depends on the ability to appropriately functionalize the pristine graphene. Here we show the direct writing of tailored phospholipid membranes on graphene using dip-pen nanolithography. Phospholipids exhibit higher mobility on graphene compared with the commonly used silicon dioxide substrate, leading to well-spread uniform membranes. Dip-pen nanolithography allows for multiplexed assembly of phospholipid membranes of different functionalities in close proximity to each other. The membranes are stable in aqueous environments and we observe electronic doping of graphene by charged phospholipids. On the basis of these results, we propose phospholipid membranes as a route for non-covalent immobilization of various functional groups on graphene for applications in biosensing and biocatalysis. As a proof of principle, we demonstrate the specific binding of streptavidin to biotin-functionalized membranes. The combination of atomic force microscopy and binding experiments yields a consistent model for the layer organization within phospholipid stacks on graphene.