Project description:Ovarian cancer is a component of the autosomal-dominant hereditary breast-ovarian cancer syndrome and may be due to a mutation in either the BRCA1 or BRCA2 genes. Two mutations in BRCA1 (185delAG and 5382insC) and one mutation in BRCA2 (6174delT) are common in the Ashkenazi Jewish population. One of these three mutations is present in approximately 2% of the Jewish population. Each mutation is associated with an increased risk of ovarian cancer, and it is expected that a significant proportion of Jewish women with ovarian cancer will carry one of these mutations. To estimate the proportion of ovarian cancers attributable to founding mutations in BRCA1 and BRCA2 in the Jewish population and the familial cancer risks associated with each, we interviewed 213 Jewish women with ovarian cancer at 11 medical centers in North America and Israel and offered these women genetic testing for the three founder mutations. To establish the presence of nonfounder mutations in this population, we also completed the protein-truncation test on exon 11 of BRCA1 and exons 10 and 11 of BRCA2. We obtained a detailed family history on all women we studied who had cancer and on a control population of 386 Ashkenazi Jewish women without ovarian or breast cancer. A founder mutation was present in 41.3% of the women we studied. The cumulative incidence of ovarian cancer to age 75 years was found to be 6.3% for female first-degree relatives of the patients with ovarian cancer, compared with 2.0% for the female relatives of healthy controls (relative risk 3.2; 95% CI 1.5-6.8; P=.002). The relative risk to age 75 years for breast cancer among the female first-degree relatives was 2.0 (95% CI 1.4-3.0; P=.0001). Only one nonfounder mutation was identified (in this instance, in a woman of mixed ancestry), and the three founding mutations accounted for most of the observed excess risk of ovarian and breast cancer in relatives.
Project description:Three founder mutations in BRCA1 and BRCA2 contribute to the risk of hereditary breast and ovarian cancer in Ashkenazi Jews (AJ). They are observed at increased frequency in the AJ compared to other BRCA mutations in Caucasian non-Jews (CNJ). Several authors have proposed that elevated allele frequencies in the surrounding genomic regions reflect adaptive or balancing selection. Such proposals predict long-range linkage disequilibrium (LD) resulting from a selective sweep, although genetic drift in a founder population may also act to create long-distance LD. To date, few studies have used the tools of statistical genomics to examine the likelihood of long-range LD at a deleterious locus in a population that faced a genetic bottleneck. We studied the genotypes of hundreds of women from a large international consortium of BRCA1 and BRCA2 mutation carriers and found that AJ women exhibited long-range haplotypes compared to CNJ women. More than 50% of the AJ chromosomes with the BRCA1 185delAG mutation share an identical 2.1 Mb haplotype and nearly 16% of AJ chromosomes carrying the BRCA2 6174delT mutation share a 1.4 Mb haplotype. Simulations based on the best inference of Ashkenazi population demography indicate that long-range haplotypes are expected in the context of a genome-wide survey. Our results are consistent with the hypothesis that a local bottleneck effect from population size constriction events could by chance have resulted in the large haplotype blocks observed at high frequency in the BRCA1 and BRCA2 regions of Ashkenazi Jews.
Project description:ImportanceAmong Ashkenazi Jewish women, 3 mutations in BRCA1 and BRCA2 severely increase the risk of breast and ovarian cancer. However, among Ashkenazi Jewish patients with breast cancer who do not carry one of these founder mutations, the likelihood of carrying another pathogenic mutation in BRCA1 or BRCA2 or another breast cancer gene is not known. This information would be valuable to the patient and family for cancer prevention and treatment.ObjectiveTo determine the frequency of cancer-predisposing mutations other than the BRCA1 and BRCA2 founder alleles among patients of Ashkenazi Jewish ancestry with breast cancer.Design, setting, and participantsIn this cohort study, genomic DNA of women from 12 major cancer centers with a first diagnosis of invasive breast cancer who identified themselves and all 4 grandparents as Ashkenazi Jewish and participated in the New York Breast Cancer Study (NYBCS) from 1996 to 2000 was sequenced for known and candidate breast cancer genes. Data analysis was performed from July 10, 2014, to March 10, 2017.Main outcomes and measuresGenomic DNA from all 1007 NYBCS probands was sequenced for 23 known and candidate breast cancer genes using BROCA, a targeted multiplexed gene panel.ResultsOf the 1007 probands in the study, 903 probands had no founder mutations in BRCA1 or BRCA2; of these probands, 7 (0.8%) carried another pathogenic mutation in BRCA1 or BRCA2, and 31 (3.4%) carried a pathogenic mutation in another breast cancer gene (29 in CHEK2, and 1 each in BRIP1 and NBN). Of all inherited predispositions to breast cancer in the NYBCS, 73.8% (104 of 142) were due to a BRCA1 or BRCA2 founder allele, 4.9% (7 of 142) to another BRCA1 or BRCA2 mutation, and 21.8% (31 of 142) to a mutation in another gene. Overall, 14.1% (142 of 1007) of Ashkenazi Jewish patients with breast cancer in the NYBCS carried a germline mutation responsible for their disease: 11.0% (111 of 1007) in BRCA1 or BRCA2, and 3.1% (31 of 1007) in CHEK2 or another breast cancer gene. Of the 111 patients with BRCA1 or BRCA2 mutations, 57 (51.4%) had a mother or sister with breast or ovarian cancer and 54 patients (48.6%) did not.Conclusions and relevanceComprehensive sequencing would provide complete relevant genetic information for Ashkenazi Jewish patients with breast cancer.
Project description:Current guidelines recommend BRCA1 and BRCA2 genetic testing for individuals with a personal or family history of certain cancers. Three BRCA1/2 founder variants - 185delAG (c.68_69delAG), 5382insC (c.5266dupC), and 6174delT (c.5946delT) - are common in the Ashkenazi Jewish population. We characterized a cohort of more than 2,800 research participants in the 23andMe database who carry one or more of the three Ashkenazi Jewish founder variants, evaluating two characteristics that are typically used to recommend individuals for BRCA testing: self-reported Jewish ancestry and family history of breast, ovarian, prostate, or pancreatic cancer. Of the 1,967 carriers who provided self-reported ancestry information, 21% did not self-report Jewish ancestry; of these individuals, more than half (62%) do have detectable Ashkenazi Jewish genetic ancestry. In addition, of the 343 carriers who provided both ancestry and family history information, 44% did not have a first-degree family history of a BRCA-related cancer and, in the absence of a personal history of cancer, would therefore be unlikely to qualify for clinical genetic testing. These findings may help inform the discussion around broader access to BRCA genetic testing.
Project description:In Ashkenazi Jewish (AJ) high risk families 3 mutations [2 in BRCA1 (c. 68_69del and c.5266dup) and 1 in BRCA2 (c.5946del)] account for the majority of high risk breast and ovarian cancer cases in that ethnic group. Few studies with limited number of genotyped individuals have expanded the spectrum of mutations in both BRCA genes beyond the 3 mutation panel. In this study, 279 high risk individual AJ were counseled at CEMIC (Centro de Educación Médica e Investigaciones Clínicas), and were genotyped first for the 3 recurrent mutation panel followed by Next Generation Sequencing (NGS) of BRCA1 BRCA2 in 76 individuals who tested negative for the first genotyping step. Of 279 probands (259 women), 55 (50 women) harbored one of the 3 mutations (19.7%); Of 76 fully sequenced cases (73 women), 6 (5 women) (7.9%) carried a pathogenic mutation: in BRCA1, c.2728C>T - p.(Gln910*); c.5407-?_(*1_?)del and c.5445G>A - p.(Trp1815*); in BRCA2, c.5351dup - p.(Asn1784Lysfs*3); c.7308del - p.(Asn2436Lysfs*33) and c.9026_9030del - p.(Tyr3009Serfs*7). Of 61 mutation carriers the distribution was as follows: 11 cancer free at the time of genotyping, 34 female breast cancer cases with age range 28-72 years (41.6 ± 9.3), 3 male breast cancer cases with age range 59-75 years (65 ± 7.3), 6 breast and ovarian cancer cases with age range 35-60 years (breast 40.4 ± 5.2; ovary 47.8 ± 7.2) and 7 ovarian cancer cases with age range 41-77 years (60.6 ± 13.3). This information proved highly useful for counseling, treatment, and prevention for the patient and the family. In conclusion comprehensive BRCA1/2 testing in AJ high risk breast ovarian cancer cases adds valuable clinically relevant information in a subset of cases estimated up to 7% and is therefore recommended.
Project description:ObjectiveWalker-Warburg syndrome (WWS) is a genetically heterogeneous congenital muscular dystrophy caused by abnormal glycosylation of alpha-dystroglycan (alpha-DG) that is associated with brain malformations and eye anomalies. The Fukutin (FKTN) gene, which causes autosomal recessively inherited WWS is most often associated with Fukuyama congenital muscular dystrophy in Japan. We describe the clinical features of four nonconsanguinous Ashkenazi Jewish families with WWS and identify the underlying genetic basis for WWS.MethodWe screened for mutations in POMGnT1, POMT1, POMT2, and FKTN, genes causing WWS, by dideoxy sequence analysis.ResultsWe identified an identical homozygous c.1167insA mutation in the FKTN gene on a common haplotype in all four families and identified 2/299 (0.7%) carriers for the c.1167insA mutation among normal American Ashkenazi Jewish adults.ConclusionThese data suggest that the c.1167insA FKTN mutation described by us is a founder mutation that can be used to target diagnostic testing and carrier screening in the Ashkenazi Jewish population.
Project description:In many families with histories suggestive of BRCA1- or BRCA2-related disease, the proband is deceased. Reliable assessment of archived tissue blocks not amenable to full gene sequencing would be helpful. In this study, a polymerase chain reaction (PCR) assay using primers that bracket the BRCA mutation site and microfluidics-based detection of heteroduplex/amplicon size differences was developed to circumvent artifacts associated with low quality DNA from formalin-fixed paraffin-embedded (FFPE) tissue. Genomic DNA was extracted from 100 FFPE specimens from patients that had previously undergone BRCA gene sequence analysis on blood specimens. Conventional PCR amplification products were differentiated using the Agilent 2100 Bioanalyzer. One FFPE specimen failed to amplify the wild-type alleles for all three sites and was therefore called indeterminate. All 62 FFPE specimens with known Ashkenazi Jewish founder mutations had both the wild-type and the correct mutated allele amplified, including one specimen that failed to amplify the mutant allele in other real-time PCR assays. Appropriately, 21 FFPE specimens known to have other BRCA1/2 mutations and 16 without any mutation had only the wild-type allele correctly amplified for each target. Therefore, by changing the primer location and detecting amplicons via heteroduplexes formed by size differences, we identified mutations from FFPE tissues missed using real-time methods.
Project description:Leigh syndrome is a frequent, heterogeneous pediatric presentation of mitochondrial oxidative phosphorylation (OXPHOS) disease, manifesting with psychomotor retardation and necrotizing lesions in brain deep gray matter. OXPHOS occurs at the inner mitochondrial membrane through the integrated activity of five protein complexes, of which complex V (CV) functions in a dimeric form to directly generate adenosine triphosphate (ATP). Mutations in several different structural CV subunits cause Leigh syndrome; however, dimerization defects have not been associated with human disease. We report four Leigh syndrome subjects from three unrelated Ashkenazi Jewish families harboring a homozygous splice-site mutation (c.87 + 1G>C) in a novel CV subunit disease gene, USMG5. The Ashkenazi population allele frequency is 0.57%. This mutation produces two USMG5 transcripts, wild-type and lacking exon 3. Fibroblasts from two Leigh syndrome probands had reduced wild-type USMG5 mRNA expression and undetectable protein. The mutation did not alter monomeric CV expression, but reduced both CV dimer expression and ATP synthesis rate. Rescue with wild-type USMG5 cDNA in proband fibroblasts restored USMG5 protein, increased CV dimerization and enhanced ATP production rate. These data demonstrate that a recurrent USMG5 splice-site founder mutation in the Ashkenazi Jewish population causes autosomal recessive Leigh syndrome by reduction of CV dimerization and ATP synthesis.
Project description:BACKGROUND: Several founder mutations leading to increased risk of cancer among Ashkenazi Jewish individuals have been identified, and some estimates of the age of the mutations have been published. A variety of different methods have been used previously to estimate the age of the mutations. Here three datasets containing genotype information near known founder mutations are reanalyzed in order to compare three approaches for estimating the age of a mutation. The methods are: (a) the single marker method used by Risch et al., (1995); (b) the intra-allelic coalescent model known as DMLE, and (c) the Goldgar method proposed in Neuhausen et al. (1996), and modified slightly by our group. The three mutations analyzed were MSH2*1906 G->C, APC*I1307K, and BRCA2*6174delT. RESULTS: All methods depend on accurate estimates of inter-marker recombination rates. The modified Goldgar method allows for marker mutation as well as recombination, but requires prior estimates of the possible haplotypes carrying the mutation for each individual. It does not incorporate population growth rates. The DMLE method simultaneously estimates the haplotypes with the mutation age, and builds in the population growth rate. The single marker estimates, however, are more sensitive to the recombination rates and are unstable. Mutation age estimates based on DMLE are 16.8 generations for MSH2 (95% credible interval (13, 23)), 106 generations for I1037K (86-129), and 90 generations for 6174delT (71-114). CONCLUSIONS: For recent founder mutations where marker mutations are unlikely to have occurred, both DMLE and the Goldgar method can give good results. Caution is necessary for older mutations, especially if the effective population size may have remained small for a long period of time.
Project description:BackgroundTechnological advances raise the possibility of systematic population-based genetic testing for cancer-predisposing mutations, but it is uncertain whether benefits outweigh disadvantages. We directly compared the psychological/quality-of-life consequences of such an approach to family history (FH)-based testing.MethodsIn a randomized controlled trial of BRCA1/2 gene-mutation testing in the Ashkenazi Jewish (AJ) population, we compared testing all participants in the population screening (PS) arm with testing those fulfilling standard FH-based clinical criteria (FH arm). Following a targeted community campaign, AJ participants older than 18 years were recruited by self-referral after pretest genetic counseling. The effects of BRCA1/2 genetic testing on acceptability, psychological impact, and quality-of-life measures were assessed by random effects regression analysis. All statistical tests were two-sided.ResultsOne thousand, one hundred sixty-eight AJ individuals were counseled, 1042 consented, 1034 were randomly assigned (691 women, 343 men), and 1017 were eligible for analysis. Mean age was 54.3 (SD = 14.66) years. Thirteen BRCA1/2 carriers were identified in the PS arm, nine in the FH arm. Five more carriers were detected among FH-negative FH-arm participants following study completion. There were no statistically significant differences between the FH and PS arms at seven days or three months on measures of anxiety, depression, health anxiety, distress, uncertainty, and quality-of-life. Contrast tests indicated that overall anxiety (P = .0001) and uncertainty (P = .005) associated with genetic testing decreased; positive experience scores increased (P = .0001); quality-of-life and health anxiety did not change with time. Overall, 56% of carriers did not fulfill clinical criteria for genetic testing, and the BRCA1/2 prevalence was 2.45%.ConclusionCompared with FH-based testing, population-based genetic testing in Ashkenazi Jews doesn't adversely affect short-term psychological/quality-of-life outcomes and may detect 56% additional BRCA carriers.