EcoRII: a restriction enzyme evolving recombination functions?
Ontology highlight
ABSTRACT: The restriction endonuclease EcoRII requires the cooperative interaction with two copies of the sequence 5'CCWGG for DNA cleavage. We found by limited proteolysis that EcoRII has a two-domain structure that enables this particular mode of protein-DNA interaction. The C-terminal domain is a new restriction endonuclease, EcoRII-C. In contrast to the wild-type enzyme, EcoRII-C cleaves DNA specifically at single 5'CCWGG sites. Moreover, substrates containing two or more cooperative 5'CCWGG sites are cleaved much more efficiently by EcoRII-C than by EcoRII. The N-terminal domain binds DNA specifically and attenuates the activity of EcoRII by making the enzyme dependent on a second 5'CCWGG site. Therefore, we suggest that a precursor EcoRII endonuclease acquired an additional DNA-binding domain to enable the interaction with two 5'CCWGG sites. The current EcoRII molecule could be an evolutionary intermediate between a site-specific endonuclease and a protein that functions specifically with two DNA sites such as recombinases and transposases. The combination of these functions may enable EcoRII to accomplish its own propagation similarly to transposons.
SUBMITTER: Mucke M
PROVIDER: S-EPMC129036 | biostudies-literature | 2002 Oct
REPOSITORIES: biostudies-literature
ACCESS DATA