Project description:BackgroundThe NORMAN Association (https://www.norman-network.com/) initiated the NORMAN Suspect List Exchange (NORMAN-SLE; https://www.norman-network.com/nds/SLE/) in 2015, following the NORMAN collaborative trial on non-target screening of environmental water samples by mass spectrometry. Since then, this exchange of information on chemicals that are expected to occur in the environment, along with the accompanying expert knowledge and references, has become a valuable knowledge base for "suspect screening" lists. The NORMAN-SLE now serves as a FAIR (Findable, Accessible, Interoperable, Reusable) chemical information resource worldwide.ResultsThe NORMAN-SLE contains 99 separate suspect list collections (as of May 2022) from over 70 contributors around the world, totalling over 100,000 unique substances. The substance classes include per- and polyfluoroalkyl substances (PFAS), pharmaceuticals, pesticides, natural toxins, high production volume substances covered under the European REACH regulation (EC: 1272/2008), priority contaminants of emerging concern (CECs) and regulatory lists from NORMAN partners. Several lists focus on transformation products (TPs) and complex features detected in the environment with various levels of provenance and structural information. Each list is available for separate download. The merged, curated collection is also available as the NORMAN Substance Database (NORMAN SusDat). Both the NORMAN-SLE and NORMAN SusDat are integrated within the NORMAN Database System (NDS). The individual NORMAN-SLE lists receive digital object identifiers (DOIs) and traceable versioning via a Zenodo community (https://zenodo.org/communities/norman-sle), with a total of > 40,000 unique views, > 50,000 unique downloads and 40 citations (May 2022). NORMAN-SLE content is progressively integrated into large open chemical databases such as PubChem (https://pubchem.ncbi.nlm.nih.gov/) and the US EPA's CompTox Chemicals Dashboard (https://comptox.epa.gov/dashboard/), enabling further access to these lists, along with the additional functionality and calculated properties these resources offer. PubChem has also integrated significant annotation content from the NORMAN-SLE, including a classification browser (https://pubchem.ncbi.nlm.nih.gov/classification/#hid=101).ConclusionsThe NORMAN-SLE offers a specialized service for hosting suspect screening lists of relevance for the environmental community in an open, FAIR manner that allows integration with other major chemical resources. These efforts foster the exchange of information between scientists and regulators, supporting the paradigm shift to the "one substance, one assessment" approach. New submissions are welcome via the contacts provided on the NORMAN-SLE website (https://www.norman-network.com/nds/SLE/).Supplementary informationThe online version contains supplementary material available at 10.1186/s12302-022-00680-6.
Project description:Two temperate mycobacteriophages, Dallas and Jonghyun, were isolated from soil in Washington, DC, using the bacterial host Mycobacterium smegmatis mc2155. Analysis of the genomes revealed that Dallas and Jonghyun belong to clusters J and G, respectively. The structures of the genomes are typical of their respective clusters.
Project description:Archaeology has yet to capitalise on the opportunities offered by bioarchaeological approaches to examine the impact of the 11th-century AD Norman Conquest of England. This study utilises an integrated multiproxy analytical approach to identify and explain changes and continuities in diet and foodways between the 10th and 13th centuries in the city of Oxford, UK. The integration of organic residue analysis of ceramics, carbon (δ13C) and nitrogen (δ15N) isotope analysis of human and animal bones, incremental analysis of δ13C and δ15N from human tooth dentine and palaeopathological analysis of human skeletal remains has revealed a broad pattern of increasing intensification and marketisation across various areas of economic practice, with a much lesser and more short-term impact of the Conquest on everyday lifestyles than is suggested by documentary sources. Nonetheless, isotope data indicate short-term periods of instability, particularly food insecurity, did impact individuals. Evidence of preferences for certain foodstuffs and cooking techniques documented among the elite classes were also observed among lower-status townspeople, suggesting that Anglo-Norman fashions could be adopted across the social spectrum. This study demonstrates the potential for future archaeological research to generate more nuanced understanding of the cultural impact of the Norman Conquest of England, while showcasing a method which can be used to elucidate the undocumented, everyday implications of other large-scale political events on non-elites.