Project description:It is assumed that a timely mass administration of antiviral drugs, backed by quarantines and social distancing, could contain a nascent influenza epidemic at its source, provided that the first clusters of cases were localized within a short time. However, effective routine surveillance may be impossible in countries lacking basic public health resources. For a global containment strategy to be successful, low-cost, easy-to-use handheld units that permit decentralized testing would be vital. Here we present a microfluidic platform that can detect the highly pathogenic avian influenza virus H5N1 in a throat swab sample by using magnetic forces to manipulate a free droplet containing superparamagnetic particles. In a sequential process, the viral RNA is isolated, purified, preconcentrated by 50,000% and subjected to ultrafast real-time RT-PCR. Compared to commercially available tests, the bioassay is equally sensitive and is 440% faster and 2,000-5,000% cheaper.
Project description:In 1918, a strain of influenza A virus caused a human pandemic resulting in the deaths of 50 million people. A century later, with the advent of sequencing technology and corresponding phylogenetic methods, we know much more about the origins, evolution and epidemiology of influenza epidemics. Here we review the history of avian influenza viruses through the lens of their genetic makeup: from their relationship to human pandemic viruses, starting with the 1918 H1N1 strain, through to the highly pathogenic epidemics in birds and zoonoses up to 2018. We describe the genesis of novel influenza A virus strains by reassortment and evolution in wild and domestic bird populations, as well as the role of wild bird migration in their long-range spread. The emergence of highly pathogenic avian influenza viruses, and the zoonotic incursions of avian H5 and H7 viruses into humans over the last couple of decades are also described. The threat of a new avian influenza virus causing a human pandemic is still present today, although control in domestic avian populations can minimize the risk to human health. This article is part of the theme issue 'Modelling infectious disease outbreaks in humans, animals and plants: approaches and important themes'. This issue is linked with the subsequent theme issue 'Modelling infectious disease outbreaks in humans, animals and plants: epidemic forecasting and control'.
Project description:UnlabelledInfluenza A virus subtype H5N1, also known as "bird flu" has been documented to cause an outbreak of respiratory diseases in humans. The unprecedented spread of highly pathogenic avian influenza type A is a threat to veterinary and human health. The BFluenza is a relational database which is solely devoted to proteomic information of H5N1 subtype. Bfluenza has novel features including computed physico-chemical properties data of H5N1 viral proteins, modeled structures of viral proteins, data of protein coordinates, experimental details, molecular description and bibliographic reference. The database also contains nucleotide and their decoded protein sequences data. The database can be searched in various modes by setting search options. The structure of viral protein could be visualized by JMol viewer or by Discovery Studio.AvailabilityThe database is available for free at http://www.bfluenza.info.
Project description:Little is known about the inheritance of very low heteroplasmy mitochondria DNA (mtDNA) variations. Even with the development of new next-generation sequencing methods, the practical lower limit of measured heteroplasmy is still about 1% due to the inherent noise level of the sequencing. In this study, we sequenced the mitochondrial genome of 44 individuals using Illumina high-throughput sequencing technology and obtained high-coverage mitochondria sequencing data. Our study population contains many mother-offspring pairs. This unique study design allows us to bypass the usual heteroplasmy limitation by analyzing the correlation of mutation levels at each position in the mtDNA sequence between maternally related pairs and non-related pairs. The study showed that very low heteroplasmy variants, down to almost 0.1%, are inherited maternally and that this inheritance begins to decrease at about 0.5%, corresponding to a bottleneck of about 200 mtDNA.
Project description:The loss of biodiversity following fragmentation and degradation of habitat is a major issue in conservation biology. As competition for resources increases following habitat loss and fragmentation, severe population declines may occur even in common, highly mobile species; such demographic decline may cause changes within the population structure of the species. The regent honeyeater, Anthochaera phrygia, is a highly nomadic woodland bird once common in its native southeast Australia. It has experienced a sharp decline in abundance since the late 1970s, following clearing of large areas of its preferred habitat, box-ironbark woodland, within the last 200 years. A captive breeding program has been established as part of efforts to restore this species. This study used genetic data to examine the range-wide population structure of regent honeyeaters, including spatial structure, its change through time, sex differences in philopatry and mobility, and genetic differences between the captive and wild populations. There was low genetic differentiation between birds captured in different geographic areas. Despite the recent demographic decline, low spatial structure appears to have some temporal consistency. Both sexes appear to be highly mobile, and there does not seem to be significant genetic differentiation between the captive and wild populations. We conclude that management efforts for survival of this species, including habitat protection, restoration, and release of captive-bred birds into the wild, can treat the species as effectively a single genetic population.
Project description:The epidemic of H7N9 bird flu in eastern China in early 2013 has caused much attention from researchers as well as public health workers. The issue on modeling the transmission risks is very interesting topic. In this article, this issue is debated and discussed in order to promote further researches on prediction and prevention of avian influenza viruses supported by better interdisciplinary datasets from the surveillance and response system.
Project description:Many pathogens associated with chronic infections evolve so rapidly that strains found late in an infection have little in common with the initial strain. This raises questions at different levels of analysis because rapid within-host evolution affects the course of an infection, but it can also affect the possibility for natural selection to act at the between-host level. We present a nested approach that incorporates within-host evolutionary dynamics of a rapidly mutating virus (hepatitis C virus) targeted by a cellular cross-reactive immune response, into an epidemiological perspective. The viral trait we follow is the replication rate of the strain initiating the infection. We find that, even for rapidly evolving viruses, the replication rate of the initial strain has a strong effect on the fitness of an infection. Moreover, infections caused by slowly replicating viruses have the highest infection fitness (i.e., lead to more secondary infections), but strains with higher replication rates tend to dominate within a host in the long-term. We also study the effect of cross-reactive immunity and viral mutation rate on infection life history traits. For instance, because of the stochastic nature of our approach, we can identify factors affecting the outcome of the infection (acute or chronic infections). Finally, we show that anti-viral treatments modify the value of the optimal initial replication rate and that the timing of the treatment administration can have public health consequences due to within-host evolution. Our results support the idea that natural selection can act on the replication rate of rapidly evolving viruses at the between-host level. It also provides a mechanistic description of within-host constraints, such as cross-reactive immunity, and shows how these constraints affect the infection fitness. This model raises questions that can be tested experimentally and underlines the necessity to consider the evolution of quantitative traits to understand the outcome and the fitness of an infection.