Project description:High-grade serous ovarian cancer presents significant challenges due to its poor prognosis and high heterogeneity, both of which complicate treatment responses. This project aims to understand intra-patient tumor evolution by investigating different sampling sites (primary and metastatic) at the time of diagnosis and during disease recurrence. A total of 183 biopsies from 50 patients were collected for this purpose, and bulk mRNA sequencing was performed. The majority of samples originated from following tissue types: omentum, ovary, and ascites.
Project description:Chemokine receptors on leukocytes mediate the recruitment and accumulation of these cells within affected joints in chronic inflammatory diseases such as rheumatoid arthritis (RA). Identification of involved receptors offers potential for development of therapeutic interventions. The objective of this study was to investigate the expression of orphan receptor GPR15/BOB in the synovium of RA and non-RA patients and in peripheral blood of RA patients and healthy donors. GPR15/BOB protein and messenger RNA expression were examined in RA and non-RA synovium by immunofluorescence and reverse-transcription polymerase chain reaction (RT-PCR) respectively. GPR15/BOB expression on peripheral blood leukocytes was analysed by flow cytometry and GPR15/BOB messenger RNA was examined in peripheral blood monocytes by RT-PCR. GPR15/BOB protein was observed in CD68+ and CD14+ macrophages in synovia, with greater expression in RA synovia. GPR15/BOB protein was expressed in all patient synovia whereas in non-RA synovia expression was low or absent. Similarly GPR15/BOB messenger RNA was detected in all RA and a minority of non-RA synovia. GPR15/BOB protein was expressed on peripheral blood leukocytes from RA and healthy individuals with increased expression by monocytes and neutrophils in RA. GPR15/BOB messenger RNA expression was confirmed in peripheral blood monocytes. In conclusion GPR15/BOB is expressed by macrophages in synovial tissue and on monocytes and neutrophils in peripheral blood, and expression is up-regulated in RA patients compared to non-RA controls. This orphan receptor on monocytes/macrophages and neutrophils may play a role in RA pathophysiology.
Project description:Expression of the immunoglobulin heavy chain (IGH) locus of the channel catfish (Ictalurus punctatus) is driven by the Emu3' enhancer, whose core region contains two octamer motifs and a muE5 site. Orthologues of the Oct1 and Oct2 transcription factors have been cloned in the channel catfish and shown to bind to the octamer motifs within the core enhancer. While catfish Oct2 is an activator of transcription, catfish Oct1 failed to drive transcription and may act as a negative regulator of IGH transcription. In mammals, the Oct co-activator BOB.1 (B cell Oct-binding protein1, also known as OCA-B and OBF-1) greatly enhances the transcriptional activity of Oct factors and plays an important role in the development of the immune system. An orthologue of BOB.1 has been cloned in the catfish, and its function characterized. The POU binding domain of the catfish BOB.1 was found to be 95% identical at the amino acid level with the binding domain of human BOB.1, and all the residues directly involved in binding to the Oct-DNA complex were conserved. Despite this conservation, catfish BOB.1 failed to enhance transcriptional activation mediated by endogenous or co-transfected catfish Oct2, and failed to rescue the activity of the inactive catfish Oct1. Electrophoretic mobility shift assays showed that catfish BOB.1 was capable of binding both catfish Oct1 and Oct2 when they formed a complex with the Oct motif. Analysis of recombinant chimeric catfish and human BOB.1 proteins demonstrated that the failure to drive transcription was due to the lack of a functional activation domain within the catfish BOB.1.
Project description:BOB.1/OBF.1 is a transcriptional coactivator essential at several stages of B-cell development. In T cells, BOB.1/OBF.1 expression is inducible by co-stimulation. However, a defined role of BOB.1/OBF.1 for T-cell function had not been discovered so far. Here, we show that BOB.1/OBF.1 is critical for T helper cell function. BOB.1/OBF.1(-/-) mice showed imbalanced immune responses, resulting in increased susceptibility to Leishmania major infection. Functional analyses revealed specific defects in TH1 and TH2 cells. Whereas expression levels of TH1 cytokines were reduced, the secretion of TH2 cytokines was increased. BOB.1/OBF.1 directly contributes to the IFNgamma and IL2 promoter activities. In contrast, increased TH2 cytokine production is controlled indirectly, probably via the transcription factor PU.1, the expression of which is regulated by BOB.1/OBF.1. Thus, BOB.1/OBF.1 regulates the balance of TH1 versus TH2 mediated immunity.