Project description:Intraspecies violence, including lethal interactions, is a relatively common phenomenon in mammals. Contrarily, interspecies violence has mainly been investigated in the context of predation and received most research attention in carnivores. Here, we provide the first information of two lethal coalitionary attacks of chimpanzees (Pan troglodytes troglodytes) on another hominid species, western lowland gorillas (Gorilla gorilla gorilla), that occur sympatrically in the Loango National Park in Gabon. In both events, the chimpanzees significantly outnumbered the gorillas and victims were infant gorillas. We discuss these observations in light of the two most widely accepted theoretical explanations for interspecific lethal violence, predation and competition, and combinations of the two-intraguild predation and interspecific killing. Given these events meet conditions proposed to trigger coalitional killing of neighbours in chimpanzees, we also discuss them in light of chimpanzees' intraspecific interactions and territorial nature. Our findings may spur further research into the complexity of interspecies interactions. In addition, they may aid in combining field data from extant models with the Pliocene hominid fossil record to better understand behavioural adaptations and interspecific killing in the hominin lineage.
Project description:Studies of primate lentiviruses continue to provide information about the evolution of simian immunodeficiency viruses (SIVs) and the origin and emergence of HIV since chimpanzees in west-central Africa (Pan troglodytes troglodytes) were recognized as the reservoir of SIVcpzPtt viruses, which have been related phylogenetically to HIV-1. Using in-house peptide ELISAs to study SIV prevalence, we tested 104 wild-born captive chimpanzees from Gabon and Congo. We identified two new cases of SIVcpz infection in Gabon and characterized a new SIVcpz strain, SIVcpzPtt-Gab4. The complete sequence (9093 bp) was obtained by a PCR-based 'genome walking' approach to generate 17 overlapping fragments. Phylogenetic analyses of separated genes (gag, pol-vif and env-nef) showed that SIVcpzPtt-Gab4 is closely related to SIVcpzPtt-Gab1 and SIVcpzPtt-Gab2. No significant variation in viral load was observed during 3 years of follow-up, but a significantly lower CD4+ T cells count was found in infected than in uninfected chimpanzees (p<0.05). No clinical symptoms of SIV infection were observed in the SIV-positive chimpanzees. Further field studies with non-invasive methods are needed to determine the prevalence, geographic distribution, species association, and natural history of SIVcpz strains in the chimpanzee habitat in Gabon.
Project description:BackgroundBacillus cereus biovar anthracis (Bcbva) is an emergent bacterium closely related to Bacillus anthracis, the etiological agent of anthrax. The latter has a worldwide distribution and usually causes infectious disease in mammals associated with savanna ecosystems. Bcbva was identified in humid tropical forests of Côte d'Ivoire in 2001. Here, we characterize the potential geographic distributions of Bcbva in West Africa and B. anthracis in sub-Saharan Africa using an ecological niche modeling approach.Methodology/principal findingsGeoreferenced occurrence data for B. anthracis and Bcbva were obtained from public data repositories and the scientific literature. Combinations of temperature, humidity, vegetation greenness, and soils values served as environmental variables in model calibrations. To predict the potential distribution of suitable environments for each pathogen across the study region, parameter values derived from the median of 10 replicates of the best-performing model for each pathogen were used. We found suitable environments predicted for B. anthracis across areas of confirmed and suspected anthrax activity in sub-Saharan Africa, including an east-west corridor from Ethiopia to Sierra Leone in the Sahel region and multiple areas in eastern, central, and southern Africa. The study area for Bcbva was restricted to West and Central Africa to reflect areas that have likely been accessible to Bcbva by dispersal. Model predicted values indicated potential suitable environments within humid forested environments. Background similarity tests in geographic space indicated statistical support to reject the null hypothesis of similarity when comparing environments associated with B. anthracis to those of Bcbva and when comparing humidity values and soils values individually. We failed to reject the null hypothesis of similarity when comparing environments associated with Bcbva to those of B. anthracis, suggesting that additional investigation is needed to provide a more robust characterization of the Bcbva niche.Conclusions/significanceThis study represents the first time that the environmental and geographic distribution of Bcbva has been mapped. We document likely differences in ecological niche-and consequently in geographic distribution-between Bcbva and typical B. anthracis, and areas of possible co-occurrence between the two. We provide information crucial to guiding and improving monitoring efforts focused on these pathogens.
Project description:BackgroundAnthrax, a zoonotic disease caused by the spore-forming bacterium Bacillus anthracis, remains a major global public health concern, especially in countries with limited resources. Sierra Leone, a West African country historically plagued by anthrax, has almost been out of report on this disease in recent decades. In this study, we described a large-scale anthrax outbreak affecting both animals and humans and attempted to characterize the pathogen using molecular techniques.MethodsThe causative agent of the animal outbreak in Port Loko District, Sierra Leone, between March and May 2022 was identified using the nanopore sequencing technique. A nationwide active surveillance was implemented from May 2022 to June 2023 to monitor the occurrence of anthrax-specific symptoms in humans. Suspected cases were subsequently verified using quantitative polymerase chain reaction. Full-genome sequencing was accomplished by combining long-read and short-read sequencing methods. Subsequent phylogenetic analysis was performed based on the full-chromosome single nucleotide polymorphisms.ResultsThe outbreak in Port Loko District, Sierra Leone, led to the death of 233 animals between March 26th and May 16th, 2022. We ruled out the initial suspicion of Anaplasma species and successfully identified B. anthracis as the causative agent of the outbreak. As a result of the government's prompt response, out of the 49 suspected human cases identified during the one-year active surveillance, only 6 human cases tested positive, all within the first month after the official declaration of the outbreak. The phylogenetic analysis indicated that the BaSL2022 isolate responsible for the outbreak was positioned in the A.Br.153 clade within the TransEuroAsian group of B. anthracis.ConclusionsWe successfully identified a large-scale anthrax outbreak in Sierra Leone. The causative isolate of B. anthracis, BaSL2022, phylogenetically bridged other lineages in A.Br.153 clade and neighboring genetic groups, A.Br.144 and A.Br.148, eventually confirming the spillover of anthrax from West Africa. Given the wide dissemination of B. anthracis spores, it is highly advisable to effectively monitor the potential reoccurrence of anthrax outbreaks and to launch campaigns to improve public awareness regarding anthrax in Sierra Leone.
Project description:BackgroundAn assessment of population size and structure is an important first step in devising conservation and management plans for endangered species. Many threatened animals are elusive, rare and live in habitats that prohibit directly counting individuals. For example, a well-founded estimate of the number of great apes currently living in the wild is lacking. Developing methods to obtain accurate population estimates for these species is a priority for their conservation management. Genotyping non-invasively collected faecal samples is an effective way of evaluating a species' population size without disruption, and can also reveal details concerning population structure.Methodology/principal findingsWe opportunistically collected wild chimpanzee faecal samples for genetic capture-recapture analyses over a four-year period in a 132 km(2) area of Loango National Park, Gabon. Of the 444 samples, 46% yielded sufficient quantities of DNA for genotyping analysis and the consequent identification of 121 individuals. Using genetic capture-recapture, we estimate that 283 chimpanzees (range: 208-316) inhabited the research area between February 2005 and July 2008. Since chimpanzee males are patrilocal and territorial, we genotyped samples from males using variable Y-chromosome microsatellite markers and could infer that seven chimpanzee groups are present in the area. Genetic information, in combination with field data, also suggested the occurrence of repeated cases of intergroup violence and a probable group extinction.Conclusions/significanceThe poor amplification success rate resulted in a limited number of recaptures and hence only moderate precision (38%, measured as the entire width of the 95% confidence interval), but this was still similar to the best results obtained using intensive nest count surveys of apes (40% to 63%). Genetic capture-recapture methods applied to apes can provide a considerable amount of novel information on chimpanzee population size and structure with minimal disturbance to the animals and represent a powerful complement to traditional field-based methods.
Project description:Stone tool use by wild chimpanzees of West Africa offers a unique opportunity to explore the evolutionary roots of technology during human evolution. However, detailed analyses of chimpanzee stone artifacts are still lacking, thus precluding a comparison with the earliest archaeological record. This paper presents the first systematic study of stone tools used by wild chimpanzees to crack open nuts in Bossou (Guinea-Conakry), and applies pioneering analytical techniques to such artifacts. Automatic morphometric GIS classification enabled to create maps of use wear over the stone tools (anvils, hammers, and hammers/ anvils), which were blind tested with GIS spatial analysis of damage patterns identified visually. Our analysis shows that chimpanzee stone tool use wear can be systematized and specific damage patterns discerned, allowing to discriminate between active and passive pounders in lithic assemblages. In summary, our results demonstrate the heuristic potential of combined suites of GIS techniques for the analysis of battered artifacts, and have enabled creating a referential framework of analysis in which wild chimpanzee battered tools can for the first time be directly compared to the early archaeological record.
Project description:In order to cause the disease anthrax, Bacillus anthracis requires two plasmids, pX01 and pX02, which carry toxin and capsule genes, respectively, that are used as genetic targets in the laboratory detection of the bacterium. Clinical, forensic, and environmental samples that test positive by PCR protocols established by the Centers for Disease Control and Prevention for B. anthracis are considered to be potentially B. anthracis until confirmed by culture and a secondary battery of tests. We report the presence of 10 genes (acpA, capA, capB, capC, capR, capD, IS1627, ORF 48, ORF 61, and repA) and the sequence for the capsule promoter normally found on pX02 in Bacillus circulans and a Bacillus species closely related to Bacillus luciferensis. Tests revealed these sequences to be present on a large plasmid in each isolate. The 11 sequences consistently matched to B. anthracis plasmid pX02, GenBank accession numbers AF188935.1, AE011191.1, and AE017335.3. The percent nucleotide identities for capD and the capsule promoter were 99.9% and 99.7%, respectively, and for the remaining nine genes, the nucleotide identity was 100% for both isolates. The presence of these genes, which are usually associated with the pX02 plasmid, in two soil Bacillus species unrelated to B. anthracis alerts us to the necessity of identifying additional sequences that will signal the presence of B. anthracis in clinical, forensic, and environmental samples.
Project description:Self-awareness has most commonly been studied in nonhuman animals by implementing mirror self-recognition (MSR) tasks. The validity of such tasks as a stand-alone method has, however, been debated due to their high interindividual variation (including in species deemed self-aware like chimpanzees), their reliance on only one sensory modality, their discrete outcomes (i.e., pass/fail) and, in general, questionned regarding their ability to assess self-awareness. Therefore, a greater variety of methods that assess different aspects of the self, while simultaneously contributing to a more gradualist view of self-awareness, would be desirable. One such method is the body-as-obstacle task (BAO), testing for another dimension of body self-awareness. The ability to understand one's own body as an obstacle to the completion of a desired action emerges in young children at approximately the same age as mirror self-recognition, suggesting a shared mental representation. Whereas recently some studies showed body self-awareness in nonhuman animals, so far, outside of children no studies have compared how the performances of individuals relate between these two tasks. Therefore, here we study both a MSR and a BAO task in chimpanzees and gorillas. We chose these species particularly because evidence for MSR in chimpanzees is well established, whereas results for gorillas have been mixed, which has been attributed to the study design of MSR tasks, and for which a BAO task might thus provide more conclusive evidence. We find that although only some chimpanzees showed evidence for mirror self-recognition, thus replicating previous findings on interspecies differences in MSR, chimpanzees and gorillas performed equally well in the BAO task. Yet, we further found no correlation between the individuals' performances in both tasks. We discuss the implications of these findings for the interpretation of the results of BAO tasks as a possible alternative paradigm for the study of self-awareness in non-human animals.
Project description:We report here the draft genomes of three Bacillus anthracis strains isolated in France: 08-8_20 (A.Br.001/002), 99-100 (A.Br.011/009), and 00-82 (B.Br CNEVA). The total lengths of assemblies are 5,440,708 bp, 5,446,472 bp, and 5,436,014 bp for 08-8_20, 99-100, and 00-82, respectively.
Project description:The anthrax-causing bacterium Bacillus anthracis comprises the genetic clades A, B, and C. In the northernmost part (Pafuri) of Kruger National Park (KNP), South Africa, both the common A and rare B strains clades occur. The B clade strains were reported to be dominant in Pafuri before 1991, while A clade strains occurred towards the central parts of KNP. The prevalence of B clade strains is currently much lower as only A clade strains have been isolated from 1992 onwards in KNP. In this study 319 B. anthracis strains were characterized with 31-loci multiple-locus variable-number tandem repeat analysis (MLVA-31). B clade strains from soil (n = 9) and a Tragelaphus strepsiceros carcass (n = 1) were further characterised by whole genome sequencing and compared to publicly available genomes. The KNP strains clustered in the B clade before 1991 into two dominant genotypes. South African strains cluster into a dominant genotype A.Br.005/006 consisting of KNP as well as the other anthrax endemic region, Northern Cape Province (NCP), South Africa. A few A.Br.001/002 strains from both endemic areas were also identified. Subclade A.Br.101 belonging to the A.Br.Aust94 lineage was reported in the NCP. The B-clade strains seems to be vanishing, while outbreaks in South Africa are caused mainly by the A.Br.005/006 genotypes as well as a few minor clades such as A.Br.001/002 and A.Br.101 present in NCP. This work confirmed the existence of the rare and vanishing B-clade strains that group in B.Br.001 branch with KrugerB and A0991 KNP strains.