Project description:Familial adenomatous polyposis (FAP) is a dominantly inherited syndrome caused by germline mutations in the APC gene and characterized by the development of multiple colorectal adenomas and a high risk of developing colorectal cancer (CRC). The severity of polyposis is correlated with the site of the APC mutation. However, there is also phenotypic variability within families with the same underlying APC mutation, suggesting that additional factors influence the severity of polyposis. Genome-wide association studies identified several single nucleotide polymorphisms (SNPs) that are associated with CRC. We assessed whether these SNPs are associated with polyp multiplicity in proven APC mutation carriers. Sixteen CRC-associated SNPs were analysed in a cohort of 419 APC germline mutation carriers from 182 families. Clinical data were retrieved from the Dutch Polyposis Registry. Allele frequencies of the SNPs were compared for patients with <100 colorectal adenomas versus patients with ≥100 adenomas, using generalized estimating equations with the APC genotype as a covariate. We found a trend of association of two of the tested SNPs with the ≥100 adenoma phenotype: the C alleles of rs16892766 at 8q23.3 (OR 1.71, 95 % CI 1.05-2.76, p = 0.03, dominant model) and rs3802842 at 11q23.1 (OR 1.51, 95 % CI 1.03-2.22, p = 0.04, dominant model). We identified two risk variants that are associated with a more severe phenotype in APC mutation carriers. These risk variants may partly explain the phenotypic variability in families with the same APC gene defect. Further studies with a larger sample size are recommended to evaluate and confirm the phenotypic effect of these SNPs in FAP.
Project description:BackgroundGenome-wide association studies have identified at least 15 independent common genetic variants associated with colorectal cancer (CRC) risk. The aim of this study was to investigate whether 11 of these variants are associated with CRC risk for carriers of germline mutations in DNA mismatch repair (MMR) genes.MethodsA total of 927 MMR gene mutation carriers (360 MLH1, 442 MSH2, 85 MSH6 and 40 PMS2) from 315 families enrolled in the Colon Cancer Family Registry, were genotyped for the single nucleotide polymorphisms (SNPs): rs16892766 (8q23.3), rs6983267 (8q24.21), rs719725 (9p24), rs10795668 (10p14), rs3802842 (11q23.1), rs4444235 (14q22.2), rs4779584 (15q13.3), rs9929218 (16q22.1), rs4939827 (18q21.1), rs10411210 (19q13.1) and rs961253 (20p12.3). We used a weighted Cox regression to estimate CRC risk for homozygous and heterozygous carriers of the risk allele compared with homozygous non-carriers as well as for an additive per allele model (on the log scale).ResultsOver a total of 40,978 person-years observation, 426 (46%) carriers were diagnosed with CRC at a mean age of 44.3 years. For all carriers combined, we found no evidence of an association between CRC risk and the total number of risk alleles (hazard ratio [HR] per risk allele=0.97, 95% confidence interval [CI]=0.88-1.07, p=0.52).ConclusionsWe found no evidence that the SNPs associated with CRC in the general population are modifiers of the risk for MMR gene mutation carriers overall, and therefore any evidence of proven clinical utility in Lynch syndrome.
Project description:Germ-line mutations in MLH1, MSH2, MSH6, and PMS2 have been shown to cause Lynch syndrome. The penetrance of the cancer and tumor spectrum has been repeatedly studied, and multiple professional societies have proposed clinical management guidelines for affected individuals. Several studies have demonstrated a reduced penetrance for monoallelic carriers of PMS2 mutations compared with the other mismatch repair (MMR) genes, but clinical management guidelines have largely proposed the same screening recommendations for all MMR gene carriers. The authors considered whether enough evidence existed to propose new screening guidelines specific to PMS2 mutation carriers with regard to age at onset and frequency of colonic screening. Published reports of PMS2 germ-line mutations were combined with unpublished cases from the authors' research registries and clinical practices, and a discussion of potential modification of cancer screening guidelines was pursued. A total of 234 monoallelic PMS2 mutation carriers from 170 families were included. Approximately 8% of those with colorectal cancer (CRC) were diagnosed before age 30, and each of these tumors presented on the left side of the colon. As it is currently unknown what causes the early onset of CRC in some families with monoallelic PMS2 germline mutations, the authors recommend against reducing cancer surveillance guidelines in families found having monoallelic PMS2 mutations in spite of the reduced penetrance.Genet Med 18 1, 13-19.
Project description:Genome-wide association studies (GWAS) have identified 19 risk variants associated with colorectal cancer. As most of these risk variants reside outside the coding regions of genes, we conducted cis-expression quantitative trait loci (cis-eQTL) analyses to investigate possible regulatory functions on the expression of neighboring genes. Forty microsatellite stable and CpG island methylator phenotype-negative colorectal tumors and paired adjacent-normal colon tissues were used for genome-wide SNP and gene expression profiling in our cis-eQTL analyses. This submission represents transcriptome component of study.
Project description:Biallelic germline mutations in MYH are associated with colorectal neoplasms, which develop through a pathway involving somatic inactivation of APC. In this study, we investigated the incidence of the common MYH mutations in an Australian cohort of sporadic colorectal cancers, the clinicopathological features of MYH cancers, and determined whether inactivation of mismatch repair and base excision repair (BER) were mutually exclusive. The MYH gene was sequenced from lymphocyte DNA of 872 colorectal cancer patients and 478 controls. Two compound heterozygotes were identified in the cancer population and all three cancers from these individuals displayed a prominent infiltration of intraepithelial lymphocytes. In total, 11 heterozygotes were found in the cancer group and five in the control group. One tumour from an individual with biallelic germline mutation of MYH also demonstrated microsatellite instability (MSI) as a result of biallelic hypermethylation of the MLH1 promoter. Although MYH-associated cancers are rare in a sporadic colorectal population, this study shows that these tumours can develop through either a chromosomal or MSI pathway. Tumours arising in the setting of BER or mismatch repair deficiency may share a biological characteristic, which promotes lymphocytic infiltration.
Project description:Here we reported a particular case of MUTYH-associated polyposis (MAP) that had only one rare heterozygous variant, but some particular clinical manifestations contributed to occur in this male patient by only one defective MUTYH allele were worth of further investigation. We reported a case of MAP. It is about a 33-year-old man with chief complaints of hematochezia who had multiple polyps that were found in his colon via colonoscopy. He followed his doctor's advice and performed a genetic analysis examination. Germline test was positive for a major heterozygous variant: chr1:45800165 on the MUTYH gene. MUTYH gene sequence analysis confirmed the following heterozygous variant: c.55CT (p.R19X) in exon 2 (ClinVar NM_001128425). Unfortunately, his mother and daughter have the ILK variant according to genetic analysis. However, this variant at the site was not detected in his father. Various types of polyps were found on repeated colonoscopy, which tended to become latent cancerous in the future. This case indicated that awareness of the risk of carcinogenesis of polyps in carriers of monoallelic variants might accordingly increase, and our understanding of the type of genetically related disease will be enhanced by us.
Project description:Genome-wide association studies (GWAS) have identified 19 risk variants associated with colorectal cancer. As most of these risk variants reside outside the coding regions of genes, we conducted cis-expression quantitative trait loci (cis-eQTL) analyses to investigate possible regulatory functions on the expression of neighboring genes.
Project description:Li-Fraumeni syndrome is a cancer predisposition syndrome caused by pathogenic TP53 germline variants; it is associated with a high lifelong cancer risk. We analyzed the German Li-Fraumeni syndrome registry, which contains data on 304 individuals. Cancer phenotypes were correlated with variants grouped according to their ability to transactivate target genes in a yeast assay using a traditional (nonfunctional, partially functional) and a novel (clusters A, B, and C) classification of variants into different groups. Partially functional and cluster B or C variants were enriched in patients who did not meet clinical testing criteria. Time to first malignancy was longer in carriers of partially functional variants (hazard ratio = 0.38, 95% CI = 0.22 to 0.66). Variants grouped within cluster B (hazard ratio = 0.45, 95% CI = 0.28 to 0.71) or C (hazard ratio = 0.34, 95% CI = 0.19 to 0.62) were associated with later cancer onset than NULL variants. These findings can be used to risk-stratify patients and inform care.