Project description:Polyomavirus BK (BKV) has emerged as an important pathogen in kidney transplant patients. Existing taxonomic classifications of BKV come from conventional DNA sequence alignments based on limited data derived from the VP1 gene. We have used a phylogenetic whole-genome approach to examine the pattern of diversity and evolutionary relationships between 45 BKV strains isolated from multiple clinical settings. This analysis supports the classification of BKV into six genotypes, of which types V and VI have not been previously recognized. BKV strains hitherto classified as type I are, in fact, quite heterogeneous, and several cluster with our newly defined genotypes V and VI. The sequence information needed for assigning genotypes can be captured by VP1, VP2, VP3, or large T-gene sequencing. The most polymorphic coding region in the viral genome is VP1, but significant variation is also present in the large T-antigen gene, wherein polymorphisms are found in 11.39% of all nucleotide sites, 46.22% of which are cluster specific. Type-specific amino acid changes within the VP1 region are predicted to map to the BC and DE loops. The number of taxonomically informative amino acid changes in the large T antigen exceeds even that of the VP1 region. Viral strains isolated from healthy subjects and from patients with human immunodeficiency virus infection, Wiskott-Aldrich syndrome, and vasculopathy with capillary leak syndrome formed distinct subclusters. However, within the kidney transplant population, BKV strains derived from patients with asymptomatic viruria did not show complete separation from strains associated with allograft nephropathy.
Project description:BK virus (BKV) genotyping has been historically based on nucleotides 1744 to 1812 in the VP1 gene. We reevaluated this practice by making BKV whole-genome and gene-specific phylogenetic trees as well as performing single nucleotide polymorphism (SNP) analysis of 162 sequences available in the public domain. It was found that currently known BKV subtypes and subgroups can no longer be reliably determined by sequencing certain partial gene sequences. Phylogenetic trees based on large T-antigen (LTA) allow separation of subtype I into subgroups Ia, Ib1, Ib2, and Ic, with bootstrap values of 100%, which are better than bootstraps obtained using VP1 sequences (bootstrap values of 71 to 97%). Subtype IV can be subdivided into subgroups, but LTA bootstrap values (33 to 80%) are lower than those obtained by whole-genome analysis (68 to 87%). Subtypes V and VI provisionally identified earlier on the basis of more limited sequence data are better classified as subgroups Ib2 and Ib1, respectively. LTA positions 3634, 3772, 3934, and 4339 can serve as a minimal SNP set to distinguish between the four major BKV subtypes. No subtype II-, IVa-, or IVb-defining SNPs are available in the VP1 gene. However, the overall congruence of viral strain classification based on either VP1 or LTA phylogenetic analysis indicates that these two areas of the viral genome are genetically linked. Interstrain genetic recombination between distant loci in the VP1 and LTA areas is not a common event.
Project description:Data on polyomavirus genomic diversity has greatly expanded in the past few years. The implications of viral DNA sequence variation on the performance of molecular diagnostic assays have not been systematically examined. 716 BK, 1626 JC, and 73 SV40 virus sequences available in GenBank were aligned using Clustal-X. Five different published BKV PCR assays currently in use at major medical centers were evaluated for primer and probe mismatches with available GenBank sequences. Coverage of naturally occurring BKV strains varied amongst different assay methods. Targeted viral sequences showed major mismatch with primer or probe sequence in up to 30.7% of known BKV strains. BKV subtypes IVa, IVb, and IVc were more prone to this problem, reflecting common use of Type I Dun sequence for assay design. Despite the known polymorphism of this gene, 484 VP-1 sequences with conserved areas potentially suitable for PCR assay design are available. Assay targets in the Large T-antigen and agnogene are less subject to genetic variation, but sequence information corresponding to the latter two genes is available only for 164 and 174 published strains, respectively. Cross reactivity of appropriately selected BKV primers with JCV and SV40 sequences available in current databases was not a significant problem.
Project description:Acute renal dysfunction (ARD) is a common complication in renal transplant recipients. Multiple factors contribute to ARD development, including acute rejection and microbial infections. Many viral infections after kidney transplantation result from reactivation of "latent" viruses in the host or from the graft, such as the human Polyomavirus BK (BKV). We report the case of a 39 year-old recipient of a 2nd kidney graft who experienced BKV reactivation after a second episode of acute humoral rejection. A 10-day treatment with the quinolone antibiotic ciprofloxacin was administered with an increase of immunosuppressive therapy despite the active BKV replication. Real Time PCR analysis performed after treatment with ciprofloxacin, unexpectedly showed clearance of BK viremia and regression of BK viruria. During the follow-up, BK viremia persisted undetectable while viruria decreased further and disappeared after 3 months.BKV non-coding control region sequence analysis from all positive samples always showed the presence of archetypal sequences, with two single-nucleotide substitutions and one nucleotide deletion that, interestingly, were all representative of the subtype/subgroup I/b-1 we identified by the viral protein 1 sequencing analysis.We report the potential effect of the quinolone antibiotic ciprofloxacin in the decrease of the BKV load in both blood and urine.
Project description:The plasmid pBKV (34-2) (ATCC 45025) contains the entire BK polyomavirus Dunlop genome. Sequencing revealed 12 point mutations compared to the GenBank sequence, but only 4 point mutations compared to the published sequence. The origin of these differences is unknown, but may impact virological as well as diagnostic research and development.
Project description:The identification of the first human polyomavirus BK (BKV) has been over half century, The previous epidemiological and phylogenetic studies suggest that BKV prevailed and co-evolved with humans, leading to high seroprevalence all over the world. In general, BKV stays latent and symptomless reactivation in healthy individuals. BKV has been mainly interlinked with BKV-associated nephropathy (BKVAN) in kidney-transplant recipients and hemorrhagic cystitis (HC) in hematopoietic stem cell transplant recipients (HSCTRs). However, the mechanisms underlying BKV latency and reactivation are not fully understood and lack of extensive debate. As Merkel cell polyomavirus (MCV) was identified as a pathogenic agent of malignant cutaneous cancer Merkel cell carcinoma (MCC) since 2008, linking BKV to tumorigenesis of urologic tumors raised concerns in the scientific community. In this review, we mainly focus on advances of mechanisms of BKV latency and reactivation, and BKV-associated diseases or tumorigenesis with systematical review of formerly published papers following the PRISMA guidelines. The potential tumorigenesis of BKV in two major types of cancers, head and neck cancer and urologic cancer, was systematically updated and discussed in depth. Besides, BKV may also play an infectious role contributing to HIV-associated salivary gland disease (HIVSGD) presentation. As more evidence indicates the key role of BKV in potential tumorigenesis, it is important to pay more attention on its etiology and pathogenicity in vitro and in vivo.
Project description:BK polyomavirus (BKPyV) is a ubiquitous pathogen that typically results in asymptomatic infection. However, in immunocompromised individuals, BKPyV viral shedding in the urine can reach 109 copies per mL. These high viral levels within urine provide ideal samples for next-generation sequencing to accurately determine BKPyV genotype and identify mutations associated with pathogenesis. Sequencing data obtained can be further analyzed to better understand and characterize the genetic diversity present in BKPyV. Here, methods are described for the successful extraction of viral DNA from urine and the subsequent amplification methods to prepare a sample for next-generation sequencing.
Project description:The BK polyomavirus (BKPyV), a representative of the family Polyomaviridae, is widespread in the human population. While the virus does not cause significant clinical symptoms in immunocompetent individuals, it is activated in cases of immune deficiency, both pharmacological and pathological. Infection with the BKPyV is of particular importance in recipients of kidney transplants or HSC transplantation, in which it can lead to the loss of the transplanted kidney or to haemorrhagic cystitis, respectively. Four main genotypes of the virus are distinguished on the basis of molecular differentiation. The most common genotype worldwide is genotype I, with a frequency of about 80%, followed by genotype IV (about 15%), while genotypes II and III are isolated only sporadically. The distribution of the molecular variants of the virus is associated with the region of origin. BKPyV subtype Ia is most common in Africa, Ib-1 in Southeast Asia, and Ib-2 in Europe, while Ic is the most common variant in Northeast Asia. The development of molecular methods has enabled significant improvement not only in BKPyV diagnostics, but in monitoring the effectiveness of treatment as well. Amplification of viral DNA from urine by PCR (Polymerase Chain Reaction) and qPCR Quantitative Polymerase Chain Reaction) is a non-invasive method that can be used to confirm the presence of the genetic material of the virus and to determine the viral load. Sequencing techniques together with bioinformatics tools and databases can be used to determine variants of the virus, analyse their circulation in populations, identify relationships between them, and investigate the directions of evolution of the virus.
Project description:BK polyomavirus (BKPyV or BKV) is a non-enveloped, circular double-stranded DNA virus that may exceed 80% seroprevalence in adults. BKV infection typically occurs during childhood, and the majority of adults are latently infected. While BKV infection is rarely associated with clinical disease in most individuals, in immunosuppressed individuals, reactivation may cause kidney (BK-associated nephropathy) or bladder (hemorrhagic cystitis and ureteral stenosis) injury. No antiviral therapies have been approved for the treatment of BKV infection. Reducing immunosuppression is the most effective therapy, although this is not feasible in many patients. Thus, a robust understanding of viral pathogenesis and viral diversity remains important for the development of future therapeutic strategies. Studies of BKV diversity are quite sparse compared to other common viral infections; thus, much of our understanding of BVK variability and evolution relies heavily analogous studies of other viruses such as HIV or viral hepatitis. We provide a comprehensive review of BKV diversity at the population and individual level with careful consideration of how viral variability may impact viral replication, pathogenesis, tropism, and protein function. We also discuss a number of outstanding questions related to BK virus diversity that should be explored rigorously in future studies.
Project description:Viral microRNAs (miRNAs) play an important role during infection by posttranscriptionally regulating both host and viral gene expression. However, the function of many viral miRNAs remains poorly understood. In this study, we investigated the role of the BK polyomavirus (BKPyV) miRNA in regulating virus replication. The function of the polyomavirus miRNA was investigated in archetype BKPyV, which is the transmissible form of the virus and thought to establish a persistent infection in the host urinary tract. In agreement with previous studies, we show that the BKPyV miRNA targets early mRNAs. Importantly, we show that the miRNA plays a significant role in limiting archetype BKPyV replication in a natural host cell model of infection. This regulation is accomplished through the balance of regulatory elements located within the noncoding control region that control early gene expression and miRNA expression before genome replication. We therefore provide evidence for a unique function of the polyomavirus miRNA that may have important implications for the mechanism of viral persistence.