Project description:Despite the advancement in medicine, management of heart failure (HF), which usually presents as a disease syndrome, has been a challenge to healthcare providers. This is reflected by the relatively higher rate of readmissions along with increased mortality and morbidity associated with HF. In this review article, we first provide a general overview of types of HF pathogenesis and diagnostic features of HF including the crucial role of exercise in determining the severity of heart failure, the efficacy of therapeutic strategies and the morbidity/mortality of HF. We then discuss the quality control measures to prevent the growing readmission rates for HF. We also attempt to elucidate published and ongoing clinical trials for HF in an effort to evaluate the standard and novel therapeutic approaches, including stem cell and gene therapies, to reduce the morbidity and mortality. Finally, we discuss the appropriate utilization/documentation and medical coding based on the severity of the HF alone and with minor and major co-morbidities. We consider that this review provides an extensive overview of the HF in terms of disease pathophysiology, management and documentation for the general readers, as well as for the clinicians/physicians/hospitalists.
Project description:Chronic heart failure (CHF) remains the only cardiovascular disease with an increasing hospitalization burden and an ongoing drain on health care expenditures. The prevalence of CHF increases with advancing life span, with diastolic heart failure predominating in the elderly population. Primary prevention of coronary artery disease and risk factor management via aggressive blood pressure control are central in preventing new occurrences of left ventricular dysfunction. Optimal therapy for CHF involves identification and correction of potentially reversible precipitants, target-dose titration of medical therapy, and management of hospitalizations for decompensation. The etiological phenotype, absolute decrease in left ventricular ejection fraction and a widening of QRS duration on electrocardiography, is commonly used to identify patients at increased risk of progression of heart failure and sudden death who may benefit from prophylactic implantable cardioverter-defibrillator placement with or without cardiac resynchronization therapy. Patients who transition to advanced stages of disease despite optimal traditional medical and device therapy may be candidates for hemodynamically directed approaches such as a left ventricular assist device; in selected cases, listing for cardiac transplant may be warranted.
Project description:The diagnosis of heart failure can be difficult, even for heart failure specialists. Artificial Intelligence-Clinical Decision Support System (AI-CDSS) has the potential to assist physicians in heart failure diagnosis. The aim of this work was to evaluate the diagnostic accuracy of an AI-CDSS for heart failure. AI-CDSS for cardiology was developed with a hybrid (expert-driven and machine-learning-driven) approach of knowledge acquisition to evolve the knowledge base with heart failure diagnosis. A retrospective cohort of 1198 patients with and without heart failure was used for the development of AI-CDSS (training dataset, n = 600) and to test the performance (test dataset, n = 598). A prospective clinical pilot study of 97 patients with dyspnea was used to assess the diagnostic accuracy of AI-CDSS compared with that of non-heart failure specialists. The concordance rate between AI-CDSS and heart failure specialists was evaluated. In retrospective cohort, the concordance rate was 98.3% in the test dataset. The concordance rate for patients with heart failure with reduced ejection fraction, heart failure with mid-range ejection fraction, heart failure with preserved ejection fraction, and no heart failure was 100%, 100%, 99.6%, and 91.7%, respectively. In a prospective pilot study of 97 patients presenting with dyspnea to the outpatient clinic, 44% had heart failure. The concordance rate between AI-CDSS and heart failure specialists was 98%, whereas that between non-heart failure specialists and heart failure specialists was 76%. In conclusion, AI-CDSS showed a high diagnostic accuracy for heart failure. Therefore, AI-CDSS may be useful for the diagnosis of heart failure, especially when heart failure specialists are not available.
Project description:The purpose of this study was to determine the lifetime burden and risk factors for hospitalization after heart failure (HF) diagnosis in the community.Hospitalizations in patients with HF represent a major public health problem; however, the cumulative burden of hospitalizations after HF diagnosis is unknown, and no consistent risk factors for hospitalization have been identified.We validated a random sample of all incident HF cases in Olmsted County, Minnesota, from 1987 to 2006 and evaluated all hospitalizations after HF diagnosis through 2007. International Classification of Diseases-9th Revision codes were used to determine the primary reason for hospitalization. To account for repeated events, Andersen-Gill models were used to determine the predictors of hospitalization after HF diagnosis. Patients were censored at death or last follow-up.Among 1,077 HF patients (mean age 76.8 years, 582 [54.0%] female), 4,359 hospitalizations occurred over a mean follow-up of 4.7 years. Hospitalizations were common after HF diagnosis, with 895 (83.1%) patients hospitalized at least once, and 721 (66.9%), 577 (53.6%), and 459 (42.6%) hospitalized > or =2, > or =3, and > or =4 times, respectively. The reason for hospitalization was HF in 713 (16.5%) hospitalizations and other cardiovascular in 936 (21.6%), whereas over one-half (n = 2,679, 61.9%) were noncardiovascular. Male sex, diabetes mellitus, chronic obstructive pulmonary disease, anemia, and creatinine clearance <30 ml/min were independent predictors of hospitalization (p < 0.05 for each).Multiple hospitalizations are common after HF diagnosis, though less than one-half are due to cardiovascular causes. Comorbid conditions are strongly associated with hospitalizations, and this information could be used to define effective interventions to prevent hospitalizations in HF patients.
Project description:AimsIndividuals with congenital heart disease (CHD) are at an increased risk for cancer. As cancer survival rates improve, the prevalence of late side effects, such as heart failure (HF), is becoming more evident. This study aims to evaluate the risk of developing HF following a cancer diagnosis in patients with CHD, compared with those without CHD and with CHD patients who do not have cancer.MethodsCHD patients (n = 69 799) and randomly selected non-CHD controls (n = 650 406), born in Sweden between 1952 and 2017, were identified from the Swedish National Health Registers and Total Population Register (excluding those with syndromes and transplant recipients). CHD patients who developed cancer (n = 1309) were propensity score-matched with non-CHD patients who developed cancer (n = 9425), resulting in a cohort of 1232 CHD patients with cancer and 2602 non-CHD controls with cancer (after exclusion of individuals with HF prior to cancer diagnosis). In a separate analysis, CHD patients with cancer were propensity score-matched with CHD patients without cancer (n = 68 490). A total of 1233 CHD patients with cancer and 2257 CHD patients without cancer were included in the study.ResultsAmong CHD patients with cancer, 73 (5.9%) developed HF during a mean follow-up time of 8.5 ± 8.7. Comparatively, in the propensity-matched control population, 29 (1.1%) non-CHD cancer patients (mean follow-up time of 7.3 ± 7.5) and 101 (4.5%) CHD patients without cancer (mean follow-up time of 9.9 ± 9.2) developed HF. CHD patients exhibited a significantly higher risk of HF post-cancer diagnosis compared with the non-CHD control group [hazard ratio (HR) 4.39, 95% confidence interval (CI) 2.83-6.81], after adjusting for age at cancer diagnosis and comorbidities. In the analysis between CHD patients with cancer and those without cancer, the results indicated a significantly higher risk of developing HF in CHD patients with cancer (HR 1.53, 95% CI 1.13-2.07).ConclusionsCHD patients face a more than four-fold increased risk of developing HF after a cancer diagnosis compared with cancer patients without CHD. Among CHD patients, the risk of HF is only modestly higher for those with cancer than for those without cancer. This suggests that the increased HF risk in CHD patients with cancer, relative to non-CHD cancer patients, may be more attributable to CHD itself than to cancer treatment-related side effects.
Project description:Heart failure (HF) is a significant cause of morbidity and mortality worldwide. Circulating biomarkers reflecting pathophysiological pathways involved in HF development and progression may assist clinicians in early diagnosis and management of HF patients. Natriuretic peptides (NPs) are cardioprotective hormones released by cardiomyocytes in response to pressure or volume overload. The roles of B-type NP (BNP) and N-terminal pro-B-type NP (NT-proBNP) for diagnosis and risk stratification in HF have been extensively demonstrated, and these biomarkers are emerging tools for population screening and as guides to the start of treatment in subclinical HF. On the contrary, conflicting evidence exists on the role of NPs as a guide to HF therapy. Among the other biomarkers, high-sensitivity troponins and soluble suppression of tumorigenesis-2 are the most promising biomarkers for risk stratification, with independent value to NPs. Other biomarkers evaluated as predictors of adverse outcome are galectin-3, growth differentiation factor 15, mid-regional pro-adrenomedullin, and makers of renal dysfunction. Multi-marker scores and genomic, transcriptomic, proteomic, and metabolomic analyses could further refine HF management.
Project description:BackgroundEarly heart failure (HF) recognition can reduce morbidity, yet HF is often initially diagnosed only after a patient clinically worsens. We sought to identify characteristics that predict diagnosis in the acute care setting versus the outpatient setting.MethodsWe estimated the proportion of incident HF diagnosed in the acute care setting (inpatient hospital or emergency department) versus outpatient setting based on diagnostic codes from a claims database covering commercial insurance and Medicare Advantage between 2003 and 2019. After excluding new-onset HF potentially caused by a concurrent acute cause (eg, acute myocardial infarction), we identified demographic, clinical, and socioeconomic predictors of diagnosis setting. Patients were linked to their primary care clinicians to evaluate diagnosis setting variation across clinicians.ResultsOf 959 438 patients with new HF, 38% were diagnosed in acute care. Of these, 46% had potential HF symptoms in the prior 6 months. Over time, the relative odds of acute care diagnosis increased by 3.2% annually after adjustment for patient characteristics (95% CI, 3.1%-3.3%). Acute care diagnosis setting was more likely for women compared with men (adjusted odds ratio, 1.11 [95% CI, 1.10-1.12]) and for Black patients compared with White patients (adjusted odds ratio, 1.18 [95% CI, 1.16-1.19]). The proportion of acute care diagnosis varied substantially (interquartile range: 24%-39%) among clinicians after adjusting for patient-level risk factors.ConclusionsA large proportion of first HF diagnoses occur in the acute care setting, particularly among women and Black patients, yet many had potential HF symptoms in the months before acute care visits. These results raise concerns that many HF diagnoses are missed in the outpatient setting. Earlier diagnosis could allow for timelier high-value interventions, addressing disparities and reducing the progression of HF.
Project description:AimsIron deficiency (ID) occurs in about 50% of patients with heart failure (HF). The European Society of Cardiology (ESC) recommends ID diagnostic testing in newly diagnosed patients with HF and during follow-up, with intravenous iron supplementation (IS) only recommended in patients with HF with reduced ejection fraction (HFrEF). This study aimed to assess prevalence, clinical characteristics, and application of ESC guidelines for ID and IS in patients with HF in the real-life clinical setting.Methods and resultsThe French transversal multicentre OFICSel registry (300 cardiologists) conducted in 2017 included patients hospitalized for HF at least once in the previous 5 years. Diverse adult patients were eligible including inpatients and outpatients and those with acute and chronic HF. Data were collected from cardiologists and patients using study-specific surveys. Data included demographic and clinical data, as well as HF and ID management data. Overall, 2822 patients, mainly male (69.3%) with a median age of 69 years (interquartile range 58-78), were included. A total of 1075 patients (38.1%) were tested for ID, with 364 (33.9%) diagnosed. Of these, 168 (46.2%) received IS: 128 (76.2%) intravenous IS and 40 (23.8%) oral. Among the 201 patients with HFrEF diagnosed with ID, 99 (49.3%) received IS: 79 (79.8%) intravenous IS and 20 (20.2%) oral.ConclusionsIn clinical practice, only one-third of patients with HF had a diagnostic test for ID. In patients with ID with HFrEF, only 39.3% received intravenous IS as recommended. Thus, in general, cardiologists should be encouraged to follow the ESC guidelines to ensure optimal treatment for patients with HF.
Project description:Half of patients with heart failure (HF) have a preserved left ventricular ejection fraction (HFpEF). Morbidity and mortality in HFpEF are similar to values observed in patients with HF and reduced EF, yet no effective treatment has been identified. While early research focused on the importance of diastolic dysfunction in the pathophysiology of HFpEF, recent studies have revealed that multiple non-diastolic abnormalities in cardiovascular function also contribute. Diagnosis of HFpEF is frequently challenging and relies upon careful clinical evaluation, echo-Doppler cardiography, and invasive haemodynamic assessment. In this review, the principal mechanisms, diagnostic approaches, and clinical trials are reviewed, along with a discussion of novel treatment strategies that are currently under investigation or hold promise for the future.