Project description:A novel QnrB-like plasmid-mediated resistance determinant, QnrB19, was identified from an Escherichia coli clinical isolate from Colombia. Its gene was associated with an ISEcp1-like insertion element that did not act as a promoter for its expression. Using an in vitro model of transposition, we showed that the ISEcp1-like element was able to mobilize the qnrB19 gene.
Project description:A newly identified 16S rRNA methyltransferase gene, rmtC, was accompanied by an ISEcp1 element at its 5' end. This ISEcp1 element, which contained a transposase gene, tnpA, provided a promoter activity for expression of the adjacent rmtC; and this structure enabled the rmtC gene to be transposed onto another plasmid in Escherichia coli.
Project description:The genetic environment of the 16S rRNA methylase gene rmtD was investigated. rmtD was flanked by a novel ISCR motif located downstream of class I integron In163 in the original Pseudomonas aeruginosa strain. rmtD found in Klebsiella pneumoniae appeared to have been mobilized from P. aeruginosa by an IS26-mediated event.
Project description:Hydrothermal vent habitats are characterized by high hydrostatic pressure, darkness, and the continuous release of toxic metal ions into the surrounding environment where sea anemones and other invertebrates thrive. Nevertheless, the understanding of metazoan metal ion tolerances and environmental adaptations remains limited. We assembled a chromosome-level genome for the vent sea anemone, Alvinactis idsseensis sp. nov. Comparative genomic analyses revealed gene family expansions and gene innovations in A. idsseensis sp. nov. as a response to high concentrations of metal ions. Impressively, the metal tolerance proteins MTPs is a unique evolutionary response to the high concentrations of Fe2+ and Mn2+ present in the environments of these anemones. We also found genes associated with high concentrations of polyunsaturated fatty acids that may respond to high hydrostatic pressure and found sensory and circadian rhythm-regulated genes that were essential for adaptations to darkness. Overall, our results provide insights into metazoan adaptation to metal ions, high pressure, and darkness in hydrothermal vents.
Project description:Natural populations exhibit substantial variation in quantitative traits. A quantitative trait is typically defined by its mean and variance, and to date most genetic mapping studies focus on loci altering trait means but not (co)variances. For single traits, the control of trait variance across genetic backgrounds is referred to as genetic canalization. With multiple traits, the genetic covariance among different traits in the same environment indicates the magnitude of potential genetic constraint, while genotype-by-environment interaction (GxE) concerns the same trait across different environments. While some have suggested that these three attributes of quantitative traits are different views of similar concepts, it is not yet clear, however, whether they have the same underlying genetic mechanism. Here, we detect quantitative trait loci (QTL) influencing the (co)variance of phenological traits in six distinct environments in Boechera stricta, a close relative of Arabidopsis. We identified nFT as the QTL altering the magnitude of phenological trait canalization, genetic constraint, and GxE. Both the magnitude and direction of nFT's canalization effects depend on the environment, and to our knowledge, this reversibility of canalization across environments has not been reported previously. nFT's effects on trait covariance structure (genetic constraint and GxE) likely result from the variable and reversible canalization effects across different traits and environments, which can be explained by the interaction among nFT, genomic backgrounds, and environmental stimuli. This view is supported by experiments demonstrating significant nFT by genomic background epistatic interactions affecting phenological traits and expression of the candidate gene, FT. In contrast to the well-known canalization gene Hsp90, the case of nFT may exemplify an alternative mechanism: Our results suggest that (at least in traits with major signal integrators such as flowering time) genetic canalization, genetic constraint, and GxE may have related genetic mechanisms resulting from interactions among major QTL, genomic backgrounds, and environments.
Project description:Studies of gene-environment interactions may help us to understand the disease mechanisms of common and complex diseases such as Parkinson's disease (PD). Sporadic PD, the common form of PD, is thought to be a multifactorial disorder caused by combinations of multiple genetic factors and environmental or life-style exposures. Since one of the most extensively studied life-style factors in PD is coffee/caffeine intake, here, the studies of genetic polymorphisms with life-style interactions of sporadic PD are reviewed, focusing on coffee/caffeine intake.
Project description:We propose a genetic prediction modeling approach for genome-wide association study (GWAS) data that can include not only marginal gene effects but also gene-environment (GxE) interaction effects-i.e., multiplicative effects of environmental factors with genes rather than merely additive effects of each. The proposed approach is a straightforward extension of our previous multiple regression-based method, STMGP (smooth-threshold multivariate genetic prediction), with the new feature being that genome-wide test statistics from a GxE interaction analysis are used to weight the corresponding variants. We develop a simple univariate regression approximation to the GxE interaction effect that allows a direct fit of the STMGP framework without modification. The sparse nature of our model automatically removes irrelevant predictors (including variants and GxE combinations), and the model is able to simultaneously incorporate multiple environmental variables. Simulation studies to evaluate the proposed method in comparison with other modeling approaches demonstrate its superior performance under the presence of GxE interaction effects. We illustrate the usefulness of our prediction model through application to real GWAS data from the Alzheimer's Disease Neuroimaging Initiative (ADNI).
Project description:Over the past three decades, a large number of genetic studies have been aimed at finding genetic variants associated with the risk of asthma, applying various genetic and genomic approaches including linkage analysis, candidate gene polymorphism studies, and genome-wide association studies (GWAS). However, contrary to general expectation, even single nucleotide polymorphisms (SNPs) discovered by GWAS failed to fully explain the heritability of asthma. Thus, application of rare allele polymorphisms in well defined phenotypes and clarification of environmental factors have been suggested to overcome the problem of 'missing' heritability. Such factors include allergens, cigarette smoke, air pollutants, and infectious agents during pre- and post-natal periods. The first and simplest interaction between a gene and the environment is a candidate interaction of both a well known gene and environmental factor in a direct physical or chemical interaction such as between CD14 and endotoxin or between HLA and allergens. Several GWAS have found environmental interactions with occupational asthma, aspirin exacerbated respiratory disease, tobacco smoke-related airway dysfunction, and farm-related atopic diseases. As one of the mechanisms behind gene-environment interaction is epigenetics, a few studies on DNA CpG methylation have been reported on subphenotypes of asthma, pitching the exciting idea that it may be possible to intervene at the junction between the genome and the environment. Epigenetic studies are starting to include data from clinical samples, which will make them another powerful tool for re-search on gene-environment interactions in asthma.
Project description:Although in Bacillus thuringiensis the cry genes coding for the insecticidal crystal proteins are plasmid-borne and are usually associated with mobile genetic elements, several aspects related to their genomic organization, diversification, and transmission remain to be elucidated. Plasmids of B. thuringiensis and other members of the Bacillus cereus group (n = 364) deposited in GenBank were screened for the presence of cry1 genes, and their genetic environment was analyzed using a comparative bioinformatic approach. The cry1 genes were identified in 27 B. thuringiensis plasmids ranging from 64 to 761 kb, and were predominantly associated with the ori44, ori60, or double orf156/orf157 and pXO1-16/pXO1-14 replication systems. In general, the cry1 genes occur individually or as a part of an insecticidal pathogenicity island (PAI), and are preceded by genes coding for an N-acetylmuramoyl-l-alanine amidase and a putative K+(Na+)/H+ antiporter. However, except in the case of the PAI, the latter gene is disrupted by the insertion of IS231B. Similarly, numerous mobile elements were recognized in the region downstream of cry1, except for cry1I that follows cry1A in the PAI. Therefore, the cassette involving cry1 and these two genes, flanked by transposable elements, named as the cry1 cassette, was the smallest cry1-carrying genetic unit recognized in the plasmids. Conservation of the genomic environment of the cry1 genes carried by various plasmids strongly suggests a common origin, possibly from an insecticidal PAI carried by B. thuringiensis megaplasmids.
Project description:bla(CTX-M-62), a C508T variant of bla(CTX-M-3b), was transferred from Klebsiella pneumoniae JIE137 on a conjugative plasmid together with a class 1 integron containing the dfrA12-gcuF-aadA2 cassette array, ISCR1, and qnrB2. bla(CTX-M-62) lies between intact and rearranged copies of ISEcp1 in a configuration that can be explained by a combination of transposition and homologous recombination and which also illustrates the ability of ISEcp1 to mobilize an adjacent gene as part of transposition units of different sizes.