Project description:The Becke–Roussel (BR) potential [Phys. Rev. A 1989, 39, 3761] was proposed as an approximation to the Slater potential, which is the Coulomb potential generated by the exact exchange hole. In the present work, a detailed comparison between the Slater and BR potentials in solids is presented. It is shown that the two potentials usually lead to very similar results for the electronic structure; however, in a few cases, e.g., Si, Ge, or strongly correlated systems like NiO, the fundamental band gap or magnetic properties can differ markedly. Such differences should not be neglected when the computationally expensive Slater potential is replaced by the cheap semilocal BR potential in approximations to the exact-exchange Kohn–Sham potential, such as the one proposed by Becke and Johnson [J. Chem. Phys. 2006, 124, 221101].
Project description:The scope and limitations of the Nicholas-type cyclization for the synthesis of 10-membered benzothiophene-fused heterocyclic enediynes with different functionalities were investigated. Although the Nicholas cyclization through oxygen could be carried out in the presence of an ester group, the final oxaenediyne was unstable under storage. Among the N-type Nicholas reactions, cyclization via an arenesulfonamide functional group followed by mild Co-deprotection was found to be the most promising, yielding 10-membered azaendiynes in high overall yields. By contrast, the Nicholas cyclization through the acylated nitrogen atom did not give the desired 10-membered cycle. It resulted in the formation of a pyrroline ring, whereas cyclization via an alkylated amino group resulted in a poor yield of the target 10-membered enediyne. The acylated 4-aminobenzenesulfonamide nucleophilic group was found to be the most convenient for the synthesis of functionalized 10-membered enediynes bearing a clickable function, such as a terminal triple bond. All the synthesized cyclic enediynes exhibited moderate activity against lung carcinoma NCI-H460 cells and had a minimal effect on lung epithelial-like WI-26 VA4 cells and are therefore promising compounds in the search for novel antitumor agents that can be converted into conjugates with tumor-targeting ligands.
Project description:Cyclic products can be obtained through the intramolecular version of the Nicholas reaction, which requires having the nucleophile connected to the alkyne unit. Here, we report the synthesis of 1-oxa-3-cyclooctynes starting from commercially available (1R,3S)-camphoric acid. The strategy is based on the initial preparation of propargylic alcohols, complexation of the triple bond with Co2(CO)8, and treatment with BF3·Et2O to induce an intramolecular Nicholas reaction with the free hydroxyl group as nucleophile. Finally, oxidative deprotection of the alkyne afforded the cyclooctynes in good yields. Notably, large-sized R substituents at the chiral center connected to the O atom were oriented in such a way that steric interactions were minimized in the cyclization, allowing the formation of cyclooctynes exclusively with (R) configuration, in good agreement with theoretical predictions. Moreover, preliminary studies demonstrated that these cyclooctynes were reactive in the presence of azides yielding substituted triazoles.
Project description:We report here the complete genome sequences of four subcluster L3 mycobacteriophages newly isolated from soil samples, using Mycobacterium smegmatis mc2155 as the host. Comparative genomic analyses with four previously described subcluster L3 phages reveal strong nucleotide similarity and gene conservation, with several large insertions/deletions near their right genome ends.