Project description:Today, developing and maintaining sustainable societies is becoming a notable social concern, and studies on altruism and prosociality toward future generations are increasing in importance. Although altruistic behaviors toward future generations have previously been observed in some experimental situations, it remains unknown whether prosocial preferences toward future others are based on equality or joint outcome orientations. In the present research, we exploratorily investigated preferences regarding resource distribution by manipulating the time points (i.e., present/future) of the participants and their imaginary partners. The results indicate that prosocial preference toward future others was as strong as that toward present others and seemed to be based on a joint outcome prosocial preference. Notably, when participants and their partners were at different time points, participants preferred to leave resources for the persons in the future. The findings indicate that the type of altruistic preference toward future others may differ from that toward present others, which is mainly equality.
Project description:Adults tend to like individuals who are similar to themselves, and a growing body of recent research suggests that even infants and young children prefer individuals who share their attributes or personal tastes over those who do not. In this study, we examined the nature and development of attitudes toward similar and dissimilar others in human infancy. Across two experiments with combined samples of more than 200 infant participants, we found that 9- and 14-month-old infants prefer individuals who treat similar others well and treat dissimilar others poorly. A developmental trend was observed, such that 14-month-olds' responses were more robust than were 9-month-olds'. These findings suggest that the identification of common and contrasting personal attributes influences social attitudes and judgments in powerful ways, even very early in life.
Project description:Root exudates contain specialised metabolites that affect the plant’s root microbiome. How host-specific microbes cope with these bioactive compounds, and how this ability shapes root microbiomes, remains largely unknown. We investigated how maize root bacteria metabolise benzoxazinoids, the main specialised metabolites of maize. Diverse and abundant bacteria metabolised the major compound in the maize rhizosphere MBOA and formed AMPO. AMPO forming bacteria are enriched in the rhizosphere of benzoxazinoid-producing maize and can use MBOA as carbon source. We identified a novel gene cluster associated with AMPO formation in microbacteria. The first gene in this cluster, bxdA encodes a lactonase that converts MBOA to AMPO in vitro. A deletion mutant of the homologous bxdA genes in the genus Sphingobium, does not form AMPO nor is it able to use MBOA as a carbon source. BxdA was identified in different genera of maize root bacteria. Here we show that plant-specialised metabolites select for metabolisation-competent root bacteria. BxdA represents a novel benzoxazinoid metabolisation gene whose carriers successfully colonize the maize rhizosphere and thereby shape the plant’s chemical environmental footprint
Project description:The goal of these studies was to determine how sorption by humic acids affected the bioavailability of polynuclear aromatic hydrocarbons (PAHs) to PAH-degrading microbes. Micellar solutions of humic acid were used as sorbents, and phenanthrene was used as a model PAH. Enrichments from PAH-contaminated soils established with nonsorbed phenanthrene yielded a total of 25 different isolates representing a diversity of bacterial phylotypes. In contrast, only three strains of Burkholderia spp. and one strain each of Delftia sp. and Sphingomonas sp. were isolated from enrichments with humic acid-sorbed phenanthrene (HASP). Using [14C]phenanthrene as a radiotracer, we verified that only HASP isolates were capable of mineralizing HASP, a phenotype hence termed "competence." Competence was an all-or-nothing phenotype: noncompetent strains showed no detectable phenanthrene mineralization in HASP cultures, but levels of phenanthrene mineralization effected by competent strains in HASP and NSP cultures were not significantly different. Levels and rates of phenanthrene mineralization exceeded those predicted to be supported solely by the metabolism of phenanthrene in the aqueous phase of HASP cultures. Thus, competent strains were able to directly access phenanthrene sorbed by the humic acids and did not rely on desorption for substrate uptake. To the best of our knowledge, this is the first report of (i) a selective interaction between aerobic bacteria and humic acid molecules and (ii) differential bioavailability to bacteria of PAHs sorbed to a natural biogeopolymer.
Project description:The veterinary cephalosporin drug ceftiofur is rapidly degraded in the bovine intestinal tract. A cylinder-plate assay was used to detect microbiologically active ceftiofur, and high-performance liquid chromatography-mass spectrometry analysis was used to quantify the amount of ceftiofur remaining after incubation with bovine intestinal anaerobic bacteria, which were isolated from colon contents or feces from 8 cattle. Ninety-six percent of the isolates were able to inactivate ceftiofur to some degree, and 54% actually degraded the drug. None of 9 fungal isolates inactivated or degraded ceftiofur. Facultative and obligate anaerobic bacterial species that inactivated or degraded ceftiofur were identified with Vitek and Biolog systems, respectively. A subset of ceftiofur degraders also degraded the chemically similar drug ceftriaxone. Most of the species of bacteria that degraded ceftiofur belonged to the genera Bacillus and Bacteroides. PCR analysis of bacterial DNA detected specific ?-lactamase genes. Bacillus cereus and B. mycoides isolates produced extended-spectrum ?-lactamases and metallo-?-lactamases. Seven isolates of Bacteroides spp. produced multiple ?-lactamases, including possibly CepA, and metallo-?-lactamases. Isolates of Eubacterium biforme, Bifidobacterium breve, and several Clostridium spp. also produced ceftiofur-degrading ?-lactamases. An agar gel overlay technique on isoelectric focusing separations of bacterial lysates showed that ?-lactamase enzymes were sufficient to degrade ceftiofur. These results suggest that ceftiofur is inactivated nonenzymatically and degraded enzymatically by multiple ?-lactamases from bacteria in the large intestines of cattle.
Project description:Semi-labile dissolved organic matter (DOM) accumulates in surface waters of the oligotrophic ocean gyres and turns over on seasonal to annual timescales. This reservoir of DOM represents an important source of carbon, energy, and nutrients to marine microbial communities but the identity of the microorganisms and the biochemical pathways underlying the cycling of DOM remain largely uncharacterized. In this study we describe bacteria isolated from the North Pacific Subtropical Gyre (NPSG) near Hawaii that are able to degrade phosphonates associated with high molecular weight dissolved organic matter (HMWDOM), which represents a large fraction of semi-labile DOM. We amended dilution-to-extinction cultures with HMWDOM collected from NPSG surface waters and with purified HMWDOM enriched with polysaccharides bearing alkylphosphonate esters. The HMWDOM-amended cultures were enriched in Roseobacter isolates closely related to Sulfitobacter and close relatives of hydrocarbon-degrading bacteria of the Oceanospirillaceae family, many of which encoded phosphonate degradation pathways. Sulfitobacter cultures encoding C-P lyase were able to catabolize methylphosphonate and 2-hydroxyethylphosphonate, as well as the esters of these phosphonates found in native HMWDOM polysaccharides to acquire phosphorus while producing methane and ethylene, respectively. Conversely, growth of these isolates on HMWDOM polysaccharides as carbon source did not support robust increases in cell yields, suggesting that the constituent carbohydrates in HMWDOM were not readily available to these individual isolates. We postulate that the complete remineralization of HMWDOM polysaccharides requires more complex microbial inter-species interactions. The degradation of phosphonate esters and other common substitutions in marine polysaccharides may be key steps in the turnover of marine DOM.
Project description:Psychrotolerant polychlorinated biphenyl (PCB)-degrading bacteria were isolated at 7 degreesC from PCB-contaminated Arctic soil by using biphenyl as the sole organic carbon source. These isolates were distinguished from each other by differences in substrates that supported growth and substrates that were oxidized. 16S ribosomal DNA sequences suggest that these isolates are most closely related to the genus Pseudomonas. Total removal of Aroclor 1242, and rates of removal of selected PCB congeners, by cell suspensions of Arctic soil isolates and the mesophile Burkholderia cepacia LB400 were determined at 7, 37, and 50 degreesC. Total removal values of Aroclor 1242 at 7 degreesC by LB400 and most Arctic soil isolates were similar (between 2 and 3.5 &mgr;g of PCBs per mg of cell protein). However the rates of removal of some individual PCB congeners by Arctic isolates were up to 10 times higher than corresponding rates of removal by LB400. Total removal of Aroclor 1242 and the rates of removal of individual congeners by the Arctic soil bacteria were higher at 37 degreesC than at 7 degreesC but as much as 90% lower at 50 degreesC than at 37 degreesC. In contrast, rates of PCB removal by LB400 were higher at 50 degreesC than at 37 degreesC. In all cases, temperature did not affect the congener specificity of the bacteria. These observations suggest that the PCB-degrading enzyme systems of the bacteria isolated from Arctic soil are cold adapted.
Project description:Plant-associated microbiota affect pant growth and development by regulating plant hormones homeostasis. Indole-3-acetic acid (IAA), a well-known plant hormone, can be produced by various plant-associated bacteria. However, the prevalence of bacteria with the capacity to degrade IAA in the rhizosphere has not been systematically studied. In this study, we analyzed the IAA degradation capabilities of bacterial isolates from the roots of Arabidopsis and rice. Using genomics analysis and in vitro assays, we found that 21 out of 183 taxonomically diverse bacterial isolates possess the ability to degrade IAA. Through comparative genomics and transcriptomic assays, we identified iac-like or iad-like operon in the genomes of these IAA degraders. Additionally, the putative regulator of the operon was found to be highly conserved among these strains through protein structure similarity analysis. Some of the IAA degraders could utilize IAA as their carbon and energy source. In planta, most of the IAA degrading strains mitigated Arabidopsis and rice seedling root growth inhibition (RGI) triggered by exogenous IAA. Moreover, RGI caused by complex synthetic bacterial community can be alleviated by introducing IAA degraders. Importantly, we observed increased colonization preference of IAA degraders from soil to root according to the frequency of the biomarker genes in metagenome-assembled genomes (MAGs) collected from different habitats, suggesting that there is a close association between IAA degraders and IAA producers. In summary, our findings further the understanding of the functional diversity and potential biological roles of plant-associated bacteria in host plant root morphogenesis.
Project description:Worldwide, people spend most of their time indoors; in their homes, workplaces, schools, and daycares. Indoor fungi can cause negative health effects due to the production of toxins or volatiles that trigger the immune system of the occupants. To what degree indoor fungi (mycobiomes) differ between buildings with different usage is poorly known. Here, we compare the indoor mycobiomes in 123 children's daycare centers and 214 private homes throughout Norway, as revealed by metabarcoding of DNA extracted from dust samples collected by community scientists. Although the fungal richness per se was similar in dust samples from daycares and homes, the fungal community composition differed. Yeast fungi, distributed mainly across the orders Saccharomycetales, Filobasidiales, and Tremellales, were proportionally more abundant in the daycares, while filamentous fungi, including spore-producing molds such as Aspergillus, Penicillum, and Cladosporium, were relatively more abundant in homes. Number of occupants, which is considerably higher in daycares, correlated significantly with the fungal community shift. We hypothesize that the density of occupants and their age distribution drive the systematic difference of yeasts and filamentous fungi in the two building types.