Project description:CTX-M-type extended-spectrum beta-lactamases (ESBLs) have become increasingly common worldwide, with the notable exception of the United States, where TEM- and SHV-type ESBLs have appeared to predominate. We have noted the emergence of ESBLs in our health care system (the University Health System in San Antonio, TX), especially in Escherichia coli isolates, that preferentially hydrolyze cefotaxime rather than ceftazidime, suggesting the possibility of CTX-M-type enzymes. Microbiology laboratory records were reviewed to identify ESBL-producing isolates and to compare the diameters of ceftazidime disk diffusion zones of inhibition to cefotaxime zone diameters. All isolates had been initially detected and confirmed using the procedures recommended by the Clinical and Laboratory Standards Institute. A total of 94 stored ESBL-producing isolates recovered between January 2000 and June 2006 (predominately from blood and normally sterile fluids) were retrieved for further study and screened using PCR primers specific for the presence of CTX-M, TEM, and SHV ESBLs. Only small numbers of retained ESBL-producing isolates were available for study in 2000 and 2002. The percentages of available ESBL-producing organisms in the following years were found to produce CTX-M enzymes: 2000, 25%; 2001, 10%; 2002, 0%; 2003, 60%; 2004, 69%; 2005, 89%; and 2006, 70%. The most common CTX-M-type ESBL was CTX-M-15, followed by CTX-M-16, CTX-M-8, and CTX-M-14. Comparing the disk diffusion zone diameters of cefotaxime and ceftazidime was helpful with the initial recognition of CTX-M-producing E. coli, which had an average cefotaxime zone diameter 7 mm smaller than the ceftazidime zone. However, comparing ceftazidime and cefotaxime zones for CTX-M-producing Klebsiella spp. was not helpful with initial recognition. CTX-M enzymes were also identified in Proteus mirabilis, Enterobacter spp., and Morganella morganii. Based on pulsed-field gel electrophoresis typing of the E. coli isolates, the CTX-M-producing isolates did not represent the spread of a single clone in the institution or in the community. In conclusion, CTX-M-type ESBLs are now the most common ESBL type isolated from patients in our health care system and may also be present but unrecognized in other U.S. locales.
Project description:The current global spread of multi-resistant Gram-negatives, particularly extended spectrum ?-lactamases expressing bacteria, increases the likelihood of inappropriate empiric treatment of critically ill patients with subsequently increased mortality. From a clinical perspective, fast detection of resistant pathogens would allow a pre-emptive correction of an initially inappropriate treatment. Here we present diagnostic amplification-sequencing approach as proof of principal based on the fast molecular detection and correct discrimination of CTX-M-?-lactamases, the most frequent ESBL family. The workflow consists of the isolation of total mRNA and CTX-M-specific reverse transcription (RT), amplification and pyrosequencing. Due to the high variability of the CTX-M-?-lactamase-genes, degenerated primers for RT, qRT as well as for pyrosequencing, were used and the suitability and discriminatory performance of two conserved positions within the CTX-M genes were analyzed, using one protocol for all isolates and positions, respectively. Using this approach, no information regarding the expected CTX-M variant is needed since all sequences are covered by these degenerated primers. The presented workflow can be conducted within eight hours and has the potential to be expanded to other ?-lactamase families.
Project description:A multicenter survey, carried out in 2010 in Argentina, showed an increased prevalence of extended-spectrum ?-lactamase (ESBL)-producing enterobacteria, with some changes in the molecular epidemiology of circulating ESBLs. While enzymes of the CTX-M-2 group remain endemic, the emergence of CTX-M-15 and of enzymes of the CTX-M-8 and CTX-M-9 groups was observed. The CTX-M-15-positive isolates represented 40% of CTX-M producers and included representatives of Escherichia coli ST131 and Klebsiella pneumoniae ST11.
Project description:Animals have been identified as potential reservoirs and vectors of resistance genes, with studies showing that Gram-negative bacteria can acquire resistance through the horizontal transmission of resistance genes on plasmids. It is important to understand the distribution of antimicrobial-resistant bacteria and their drug-resistant genes in animals. Previous review articles mostly focused on a single bacterium or a single animal. Our objective is to compile all ESBL-producing bacteria isolated from various animals in recent years and provide a comprehensive viewpoint. Using a thorough PubMed literature search spanning from 1 January 2020 to 30 June 2022, studies exploring extended-spectrum beta-lactamase (ESBL) producing bacteria in animals were included. ESBL-producing bacteria are present in animals from various countries around the world. The most common sources of these bacteria were farm animals, and the most frequently isolated bacteria were Escherichia coli and Klebsiella pneumoniae. The most detected ESBL genes were blaTEM, blaSHV, and blaCTX-M. The presence of ESBL-producing bacteria in animals highlights the importance of the One Health approach to address the issue of antibiotic resistance. Further research is needed to better understand the epidemiology and mechanisms of the spread of ESBL-producing bacteria in animal populations and their potential impact on human and animal health.
Project description:Urinary tract infections (UTIs) are predominantly caused by uropathogenic Escherichia coli (E. coli). There is rapid increase in antimicrobial resistance in UTIs, also declared as a serious health threat by World Health Organization (WHO). Present study was designed to investigate the antimicrobial resistance status with specific focus on ESBLs and carbapenemases in local uropathogenic E. coli (UPEC) isolates. E. coli isolates were characterized from patients of all ages visiting diagnostic laboratories for urine examination. Demographic data was also recorded for each patient. Antibiograms were developed to observe antibiotic resistance in UPEC using Kirby Bauer disc diffusion technique. Double Disc Synergy test (DDST) was used for phenotypic ESBL test. ESBLs and carbapenemases genes were detected in UPEC using PCR. The PCR results were confirmed by sequencing. The UPEC isolates under study exhibited 78%, 77%, 74%, 72% and 55% resistance against cefotaxime, amoxicillin, erythromycin, ceftriaxone and cefixime, respectively. Resistance against colistin and meropenem was observed in 64% and 34% isolates, respectively. Phenotypic DDST identified 48% isolates as ESBLs producers. Genotypic characterization identified 70%, 74.4% and 49% prevalence of CTXM-1, TEM-1 and CTXM-15 genes respectively. One isolate was observed exhibiting co-existence of all ESBL genes. TEM-1 + CTXM-1 and TEM-1 + CTXM-1 + CTXM-15 + OXA-1 gene patterns were dominant among ESBLs. For carbapenem-resistance, 14% isolates indicated the presence of KPC whereas GES and VIM was detected in 7% and 3.4% isolates, respectively. In conclusion, our results present a high prevalence of extensively drug resistant UPEC isolates with a considerable percentage of ESBL producers. These findings propose the need of continuous surveillance for antimicrobial resistance and targeted antimicrobial therapy.
Project description:BackgroundChildren who have been discharged from hospital in sub-Saharan Africa remain at substantial risk of mortality in the post-discharge period. Antimicrobial resistance (AMR) may be an important factor. We sought to determine the prevalence and risk factors associated with AMR in commensal Escherichia coli (E. coli) from Kenyan children at the time of discharge.Methodology/principle findingsFecal samples were collected from 406 children aged 1-59 months in western Kenya at the time of discharge from hospital and cultured for E. coli. Susceptibility to ampicillin, ceftriaxone, cefotaxime, ceftazidime, cefoxitin, imipenem, ciprofloxacin, gentamicin, combined amoxicillin/clavulanic acid, trimethoprim-sulfamethoxazole, azithromycin, and chloramphenicol was determined by disc diffusion according to guidelines from the Clinical and Laboratory Standards Institute (CLSI). Poisson regression was used to determine associations between participant characteristics and the presence of extended-spectrum beta-lactamases (ESBL) producing E. coli. Non-susceptibility to ampicillin (95%), gentamicin (44%), ceftriaxone (46%), and the presence of ESBL (44%) was high. Receipt of antibiotics during the hospitalization was associated with the presence of ESBL (aPR = 2.23; 95% CI: 1.29-3.83) as was being hospitalized within the prior year (aPR = 1.32 [1.07-1.69]). Open defecation (aPR = 2.02; 95% CI: 1.39-2.94), having a toilet shared with other households (aPR = 1.49; 95% CI: 1.17-1.89), and being female (aPR = 1.42; 95% CI: 1.15-1.76) were associated with carriage of ESBL E. coli.Conclusions/significanceAMR is common among isolates of E. coli from children at hospital discharge in Kenya, including nearly half having detectable ESBL.
Project description:BackgroundBloodstream infection (BSI) is a common type of infection frequently diagnosed in clinics. The emergence and spread of ESBLs-producing Escherichia coli (E. coli) has emerged as one of the biggest challenges in global community health.MethodsThe production of ESBLs was determined by the composite disk diffusion method. The expression of the various resistance and virulence genes were detected by PCR and sequencing. Multi-locus sequence typing (MLST) and phylogenetic groups were used for the classification. The transfer of resistant plasmids was determined by conjugation assay. The statistical differences were analyzed using Statistical Product and Service Solutions (SPSS) version 23.0.ResultsA total of 60 strains of ESBLs-producing E. coli were collected. The resistance genes that were identified included bla CTX-M, bla TEM, bla SHV, bla OXA-1 and mcr-1. The most common one was the bla CTX-M including bla CTX-M-27 (n = 16), bla CTX-M-14 (n = 15), bla CTX-M-15 (n = 11), bla CTX-M-55 (n = 14) and bla CTX-M-65 (n = 5). A total of 31 STs were detected, and the most abundant among which was ST131 (n = 16, 26.7%). Most of the E. coli (n = 46, 76.7%) belonged to the groups B2 and D. And some virulence genes were related to the classification of the E. coli. Among them, the detection rates of hek/hra, kpsMII and papGII-III in groups B2 and D were higher than those in groups A and B1. The detection rates of cnf1, iucC and papGII-III in ST131 were higher than those in non-ST131. And the distributions of hek/hra, iroN, iucC, kpsMII and papGII-III were related to the bla CTX-M subtypes. Finally, most bacterial (n = 32, 53.3%) resistance genes could be transferred between the bacteria by plasmids, especially IncFIB.ConclusionESBLs-producing E. coli in BSI exhibited had high resistance rates and carried a variety of virulence factors (VFs). This is necessary to strengthen the monitoring of ESBLs-producing isolates in the medical environment.
Project description:CTX-M-25 is a novel extended-spectrum beta-lactamase isolated from a single Canadian Escherichia coli isolate. Susceptibility testing demonstrated that this enzyme confers resistance to both cefotaxime and ceftazidime, but the level of resistance was reduced with the addition of beta-lactamase inhibitors. The bla(CTX-M-25) gene was detected on a 111-kb plasmid. It is a member of the CTX-M-8 group and has the closest amino acid identity (99%; three amino acid substitutions) with CTX-M-26. The bla(CTX-M-26) gene was detected on a 100-kb plasmid isolated from a Klebsiella pneumoniae strain from the United Kingdom, and plasmid profiling revealed that it showed some homology to the bla(CTX-M-25)-harboring plasmid. Both CTX-M genes were located downstream of ISEcp1, although the copy upstream of bla(CTX-M-25) was disrupted by IS50-A. Comparative kinetic studies of recombinant CTX-M-25 and CTX-M-26 enzymes showed that CTX-M-25 has a higher level of ceftazidime hydrolysis (kcat values, 33 and 0.005 s(-1) for CTX-M-25 and CTX-M-26, respectively).