Project description:THE FOREIGN LESION: The mechanistic questions for DNA base damage detection by repair proteins are discussed in this Minireview. Repair proteins could either probe and locate a weakened base pair that results from base damage, or passively capture an extrahelical base lesion in the first step of damage searching on double-stranded DNA. How some repair proteins, such as AGT (see figure), locate base lesions in DNA is still not fully understood.To remove a few damaged bases efficiently from the context of the entire genome, the DNA base repair proteins rely on remarkably specific detection mechanisms to locate base lesions. This efficient molecular recognition event inside cells has been extensively studied with various structural and biochemical tools. These studies suggest that DNA base damage can be located by repair proteins by using two mechanisms: a repair protein can probe and detect a weakened base pair that results from mutagenic or cytotoxic base damage; alternatively, a protein can passively capture and stabilize an extrahelical base lesion. Our chemical and structural studies on the direct DNA repair proteins hAGT, C-Ada and ABH2 suggest that these proteins search for weakened base pairs in their first step of damage searching. We have also discovered a very unique base-flipping mechanism used by the DNA repair protein AlkB. This protein distorts DNA and favors single stranded DNA (ssDNA) substrates over double-stranded (dsDNA) ones. Potentially, it locates base lesions in dsDNA by imposing a constraint that targets less rigid regions of the duplex DNA. The exact mechanism of how AlkB and related proteins search for damage in ssDNA and dsDNA still awaits further studies.
Project description:Endogenous and exogenous factors constantly challenge cellular DNA, generating cytotoxic and/or mutagenic DNA adducts. As a result, organisms have evolved different mechanisms to defend against the deleterious effects of DNA damage. Among these diverse repair pathways, direct DNA-repair systems provide cells with simple yet efficient solutions to reverse covalent DNA adducts. In this review, we focus on recent advances in the field of direct DNA repair, namely, photolyase-, alkyltransferase-, and dioxygenase-mediated repair processes. We present specific examples to describe new findings of known enzymes and appealing discoveries of new proteins. At the end of this article, we also briefly discuss the influence of direct DNA repair on other fields of biology and its implication on the discovery of new biology.
Project description:Alkylating agents comprise a major class of front-line cancer chemotherapeutic compounds, and while these agents effectively kill tumor cells, they also damage healthy tissues. Although base excision repair (BER) is essential in repairing DNA alkylation damage, under certain conditions, initiation of BER can be detrimental. Here we illustrate that the alkyladenine DNA glycosylase (AAG) mediates alkylation-induced tissue damage and whole-animal lethality following exposure to alkylating agents. Aag-dependent tissue damage, as observed in cerebellar granule cells, splenocytes, thymocytes, bone marrow cells, pancreatic β-cells, and retinal photoreceptor cells, was detected in wild-type mice, exacerbated in Aag transgenic mice, and completely suppressed in Aag⁻/⁻ mice. Additional genetic experiments dissected the effects of modulating both BER and Parp1 on alkylation sensitivity in mice and determined that Aag acts upstream of Parp1 in alkylation-induced tissue damage; in fact, cytotoxicity in WT and Aag transgenic mice was abrogated in the absence of Parp1. These results provide in vivo evidence that Aag-initiated BER may play a critical role in determining the side-effects of alkylating agent chemotherapies and that Parp1 plays a crucial role in Aag-mediated tissue damage.
Project description:Mammalian Tyrosyl-DNA phosphodiesterase 2 (Tdp2) reverses Topoisomerase 2 (Top2) DNA-protein crosslinks triggered by Top2 engagement of DNA damage or poisoning by anticancer drugs. Tdp2 deficiencies are linked to neurological disease and cellular sensitivity to Top2 poisons. Herein, we report X-ray crystal structures of ligand-free Tdp2 and Tdp2-DNA complexes with alkylated and abasic DNA that unveil a dynamic Tdp2 active site lid and deep substrate binding trench well-suited for engaging the diverse DNA damage triggers of abortive Top2 reactions. Modeling of a proposed Tdp2 reaction coordinate, combined with mutagenesis and biochemical studies support a single Mg(2+)-ion mechanism assisted by a phosphotyrosyl-arginine cation-π interface. We further identify a Tdp2 active site SNP that ablates Tdp2 Mg(2+) binding and catalytic activity, impairs Tdp2 mediated NHEJ of tyrosine blocked termini, and renders cells sensitive to the anticancer agent etoposide. Collectively, our results provide a structural mechanism for Tdp2 engagement of heterogeneous DNA damage that causes Top2 poisoning, and indicate that evaluation of Tdp2 status may be an important personalized medicine biomarker informing on individual sensitivities to chemotherapeutic Top2 poisons.
Project description:DNA alkylation damage induced by environmental carcinogens, chemotherapy drugs, or endogenous metabolites plays a central role in mutagenesis, carcinogenesis, and cancer therapy. Base excision repair (BER) is a conserved, front line DNA repair pathway that removes alkylation damage from DNA. The capacity of BER to repair DNA alkylation varies markedly between different cell types and tissues, which correlates with cancer risk and cellular responses to alkylation chemotherapy. The ability to measure cellular rates of alkylation damage repair by the BER pathway is critically important for better understanding of the fundamental processes involved in carcinogenesis, and also to advance development of new therapeutic strategies. Methods for assessing the rates of alkylation damage and repair, especially in human cells, are limited, prone to significant variability due to the unstable nature of some of the alkyl adducts, and often rely on indirect measurements of BER activity. Here, we report a highly reproducible and quantitative, cell-based assay, named alk-BER (alkylation Base Excision Repair) for measuring rates of BER following alkylation DNA damage. The alk-BER assay involves specific detection of methyl DNA adducts (7-methyl guanine and 3-methyl adenine) directly in genomic DNA. The assay has been developed and adapted to measure the activity of BER in fungal model systems and human cell lines. Considering the specificity and conserved nature of BER enzymes, the assay can be adapted to virtually any type of cultured cells. Alk-BER offers a cost efficient and reliable method that can effectively complement existing approaches to advance integrative research on mechanisms of alkylation DNA damage and repair.
Project description:Methylation at the 5 position of cytosine in DNA (5meC) is a key epigenetic mark in eukaryotes. Once introduced, 5meC can be maintained through DNA replication by the activity of 'maintenance' DNA methyltransferases (DNMTs). Despite their ancient origin, DNA methylation pathways differ widely across animals, such that 5meC is either confined to transcribed genes or lost altogether in several lineages. We used comparative epigenomics to investigate the evolution of DNA methylation. Although the model nematode Caenorhabditis elegans lacks DNA methylation, more basal nematodes retain cytosine DNA methylation, which is targeted to repeat loci. We found that DNA methylation coevolved with the DNA alkylation repair enzyme ALKB2 across eukaryotes. In addition, we found that DNMTs introduced the toxic lesion 3-methylcytosine into DNA both in vitro and in vivo. Alkylation damage is therefore intrinsically associated with DNMT activity, and this may promote the loss of DNA methylation in many species.
Project description:Members of the RecQ family of DNA helicases, mutated in several syndromes associated with cancer predisposition, are key regulators of genome stability. The Saccharomyces cerevisiae SLX4 gene is required for cell viability in the absence of Sgs1, the only yeast RecQ helicase. SLX4 encodes one subunit of the heterodimeric Slx1-Slx4 endonuclease, although its cellular function is not clear. Slx1-Slx4 was reported to preferentially cleave replication fork-like structures in vitro, and cells lacking SLX4 are hypersensitive to DNA alkylation damage. Here we report that Slx4 becomes phosphorylated in cells exposed to a wide range of genotoxins. Even though it has been proposed that the role of Slx4 is restricted to S-phase, Slx4 phosphorylation is observed in cells arrested in G1 or G2 phases of the cell cycle, but not during an unperturbed cell cycle. Slx4 phosphorylation is completely abolished in cells lacking the Mec1 and Tel1 protein kinases, critical regulators of genome stability, but is barely affected in the absence of both Rad53 and Chk1 kinases. Finally we show that, whereas both Slx1 and Slx4 are dispensable for activation of cell-cycle checkpoints, Slx4, but not Slx1, is required for repair of DNA alkylation damage in both aynchronously growing cells and in G2-phase-arrested cells. These results reveal Slx4 as a new target of the Mec1/Tel1 kinases, with a crucial role in DNA repair that is not restricted to the processing of stalled replisomes.
Project description:Agents that form methylation adducts in DNA are highly mutagenic and carcinogenic, and organisms have evolved specialized cellular pathways devoted to their repair, including DNA alkyltransferases. These are proteins conserved in eucarya, bacteria and archaea, acting by a unique reaction mechanism, which leads to direct repair of DNA alkylation damage and irreversible protein alkylation. The alkylated form of DNA alkyltransferases is inactive, and in eukaryotes, it is rapidly directed to degradation. We report here in vitro and in vivo studies on the DNA alkyltransferase from the thermophilic archaeon Sulfolobus solfataricus (SsOGT). The development of a novel, simple, and sensitive fluorescence-based assay allowed a careful characterization of the SsOGT biochemical and DNA binding activities. In addition, transcriptional and post-translational regulation of SsOGT by DNA damage was studied. We show that although the gene transcription is induced by alkylating agent treatment, the protein is degraded in vivo by an alkylation-dependent mechanism. These experiments suggest a striking conservation, from archaea to humans, of this important pathway safeguarding genome stability.
Project description:The SNF2 family chromatin remodeler HELLS has emerged as an important regulator of cell proliferation, genome stability, and several cancer pathways. Significant upregulation of HELLS has been reported in 33 human cancer types. While HELLS has been implicated in DNA damage response, its function in DNA repair is poorly understood. Here we report a new regulatory link between HELLS and single-strand break (SSB) repair in cellular responses to DNA alkylation damage. We found that loss of HELLS impairs SSB repair, and selectively sensitizes cells to DNA alkylating agents and PARP inhibitors (PARPi). Furthermore, we found that HELLS is co-expressed with PARP1 in cancer cells, and its loss is synthetic lethal with homologous recombination deficiency (HRD). This work unveils new functions of HELLS in modulating SSB repair and responses to clinically relevant DNA alkylation damage, thus offering new insights into the potential therapeutic value of targeting HELLS in cancer.
Project description:An efficient and broadly applicable process is reported for the direct alkylation of C-H bonds in heteroarenes, privileged scaffolds in many areas of science. This reaction is based on the copper-catalyzed addition of alkyl radicals generated from activated secondary and tertiary alkyl bromides to a wide range of arenes, including furans, thiophenes, pyrroles, and their benzo-fused derivatives, as well as coumarins and quinolinones.