Project description:When integral membrane proteins are visualized in detergents or other artificial systems, an important layer of information is lost regarding lipid interactions and their effects on protein structure. This is especially relevant to proteins for which lipids have both structural and regulatory roles. Here we demonstrate the power of combining electron cryo-microscopy with lipid nanodisc technology to ascertain the structure of the rat TRPV1 ion channel in a native bilayer environment. Using this approach, we determined the locations of annular and regulatory lipids and showed that specific phospholipid interactions enhance binding of a spider toxin to TRPV1 through formation of a tripartite complex. Furthermore, phosphatidylinositol lipids occupy the binding site for capsaicin and other vanilloid ligands, suggesting a mechanism whereby chemical or thermal stimuli elicit channel activation by promoting the release of bioactive lipids from a critical allosteric regulatory site.
Project description:PDEδ is a small protein that binds and controls the trafficking of RAS subfamily proteins. Its inhibition protects initiation of RAS signaling, and it is one of the common targets considered for oncological drug development. In this study, we used solved x-ray structures of inhibitor-bound PDEδ targets to investigate mechanisms of action of six independent all-atom MD simulations. An analysis of atomic simulations combined with the molecular mechanic-Poisson-Boltzmann solvent accessible surface area/generalized Born solvent accessible surface area calculations led to the identification of action mechanisms for a panel of novel PDEδ inhibitors. To the best of our knowledge, this study is one of the first in silico investigations on co-crystallized PDEδ protein. A detailed atomic-scale understanding of the molecular mechanism of PDEδ inhibition may assist in the design of novel PDEδ inhibitors. One of the most common side effects for diverse small molecules/kinase inhibitors is their off-target interactions with cardiac ion channels and human-ether-a-go-go channel specifically. Thus, all of the studied PDEδ inhibitors are also screened in silico at the central cavities of hERG1 potassium channels.
Project description:Lithium is the most successful mood stabilizer treatment for bipolar disorder. However, unlike conventional drugs that are designed to interact with a specific molecular target, the actions of lithium are distributed across many biological processes and pathways. Treatment response is subject to genetic variation between individuals and similar genetic variation may dictate susceptibility to side effects. Transcriptomic, genomic, and cell-model research strategies have all been deployed in the search for the genetic factors and biological systems that mediate the interaction between genetics and the therapeutic actions of lithium. In this review, recent findings from genome-wide studies and patient cell lines will be summarized and discussed from a standpoint that genuine progress is being made to define clinically useful mechanisms of this treatment, to place it in the context of bipolar disorder pathology, and to move towards a time when the prescription of lithium is targeted to those individuals who will derive the greatest benefit.
Project description:Proteinaceous toxins are observed across all levels of inter-organismal and intra-genomic conflicts. These include recently discovered prokaryotic polymorphic toxin systems implicated in intra-specific conflicts. They are characterized by a remarkable diversity of C-terminal toxin domains generated by recombination with standalone toxin-coding cassettes. Prior analysis revealed a striking diversity of nuclease and deaminase domains among the toxin modules. We systematically investigated polymorphic toxin systems using comparative genomics, sequence and structure analysis.Polymorphic toxin systems are distributed across all major bacterial lineages and are delivered by at least eight distinct secretory systems. In addition to type-II, these include type-V, VI, VII (ESX), and the poorly characterized "Photorhabdus virulence cassettes (PVC)", PrsW-dependent and MuF phage-capsid-like systems. We present evidence that trafficking of these toxins is often accompanied by autoproteolytic processing catalyzed by HINT, ZU5, PrsW, caspase-like, papain-like, and a novel metallopeptidase associated with the PVC system. We identified over 150 distinct toxin domains in these systems. These span an extraordinary catalytic spectrum to include 23 distinct clades of peptidases, numerous previously unrecognized versions of nucleases and deaminases, ADP-ribosyltransferases, ADP ribosyl cyclases, RelA/SpoT-like nucleotidyltransferases, glycosyltranferases and other enzymes predicted to modify lipids and carbohydrates, and a pore-forming toxin domain. Several of these toxin domains are shared with host-directed effectors of pathogenic bacteria. Over 90 families of immunity proteins might neutralize anywhere between a single to at least 27 distinct types of toxin domains. In some organisms multiple tandem immunity genes or immunity protein domains are organized into polyimmunity loci or polyimmunity proteins. Gene-neighborhood-analysis of polymorphic toxin systems predicts the presence of novel trafficking-related components, and also the organizational logic that allows toxin diversification through recombination. Domain architecture and protein-length analysis revealed that these toxins might be deployed as secreted factors, through directed injection, or via inter-cellular contact facilitated by filamentous structures formed by RHS/YD, filamentous hemagglutinin and other repeats. Phyletic pattern and life-style analysis indicate that polymorphic toxins and polyimmunity loci participate in cooperative behavior and facultative 'cheating' in several ecosystems such as the human oral cavity and soil. Multiple domains from these systems have also been repeatedly transferred to eukaryotes and their viruses, such as the nucleo-cytoplasmic large DNA viruses.Along with a comprehensive inventory of toxins and immunity proteins, we present several testable predictions regarding active sites and catalytic mechanisms of toxins, their processing and trafficking and their role in intra-specific and inter-specific interactions between bacteria. These systems provide insights regarding the emergence of key systems at different points in eukaryotic evolution, such as ADP ribosylation, interaction of myosin VI with cargo proteins, mediation of apoptosis, hyphal heteroincompatibility, hedgehog signaling, arthropod toxins, cell-cell interaction molecules like teneurins and different signaling messengers.
Project description:Hyaluronic acid (HA) is ubiquitously found in biological tissues and mediates wound healing mechanisms after injury by promoting cell migration and proliferation. With the development of tissue-engineered neural therapeutics, including off-the-shelf grafts for peripheral nerve repair, HA is an attractive material for clinical use because of its various biological roles. HA-based biomaterials have been carefully engineered to elicit specific in vivo host responses, however an important design feature that should be considered in these scaffolds is endogenous degradation. Hyaluronidases (HYALs) are the complementary enzymes that are responsible for HA turnover. Although HYAL expression has been widely characterized in various tissues, including the central nervous system, and for different pathologies, there remains a lack of knowledge of HYAL mediated turnover in peripheral nerve tissue. In this work, gene expression of two hyaluronidases, HYAL1 and HYAL2, and HA-binding receptor, CD44, were studied in two injury models: rat sciatic nerve crush and critical gap transection. HYAL2 and CD44 were shown to be upregulated 3 days after crush injury, whereas HYAL1 was upregulated at 3 weeks, which collectively demonstrate temporal patterning of HA breakdown. Additionally, differences were observed between HYAL and HA expression at 3 weeks when compared for both nerve injury models. The activity of HYAL in peripheral nerve tissue was determined to be approximately 0.11 μmol/min, which could be used to further model HA-based biomaterial breakdown for peripheral nerve applications. Overall, this work provides a landscape of HA turnover in peripheral nerve that can be used for future neural applications.
Project description:A number of microtubule (MT)-stabilizing agents (MSAs) have demonstrated or predicted potential as anticancer agents, but a detailed structural basis for their mechanism of action is still lacking. We have obtained high-resolution (3.9-4.2Å) cryo-electron microscopy (cryo-EM) reconstructions of MTs stabilized by the taxane-site binders Taxol and zampanolide, and by peloruside, which targets a distinct, non-taxoid pocket on β-tubulin. We find that each molecule has unique distinct structural effects on the MT lattice structure. Peloruside acts primarily at lateral contacts and has an effect on the "seam" of heterologous interactions, enforcing a conformation more similar to that of homologous (i.e., non-seam) contacts by which it regularizes the MT lattice. In contrast, binding of either Taxol or zampanolide induces MT heterogeneity. In doubly bound MTs, peloruside overrides the heterogeneity induced by Taxol binding. Our structural analysis illustrates distinct mechanisms of these drugs for stabilizing the MT lattice and is of relevance to the possible use of combinations of MSAs to regulate MT activity and improve therapeutic potential.
Project description:Polypharmacology (the ability of a drug to affect more than one molecular target) is considered a basic property of many therapeutic small molecules. Herein, we used a chemical genomics approach to systematically analyze polypharmacology by integrating several analytical tools, including the LINCS (Library of Integrated Cellular Signatures), STITCH (Search Tool for Interactions of Chemicals), and WebGestalt (WEB-based GEne SeT AnaLysis Toolkit). We applied this approach to identify functional disparities between two cytidine nucleoside analogs: azacytidine (AZA) and decitabine (DAC). AZA and DAC are structurally and mechanistically similar DNA-hypomethylating agents. However, their metabolism and destinations in cells are distinct. Due to their differential incorporation into RNA or DNA, functional disparities between AZA and DAC are expected. Indeed, different cytotoxicities of AZA and DAC toward human colorectal cancer cell lines were observed, in which cells were more sensitive to AZA. Based on a polypharmacological analysis, we found that AZA transiently blocked protein synthesis and induced an acute apoptotic response that was antagonized by concurrently induced cytoprotective autophagy. In contrast, DAC caused cell cycle arrest at the G2/M phase associated with p53 induction. Therefore, our study discriminated functional disparities between AZA and DAC, and also demonstrated the value of this chemical genomics approach that can be applied to discover novel drug action mechanisms.
Project description:A critical feature of the hypothesized RNA world would have been the ability to control chemical processes in response to environmental cues. Riboswitches present themselves as viable candidates for a sophisticated mechanism of regulatory control in RNA-based life. These regulatory elements in the modern world are most commonly found in the 5'-untranslated regions of bacterial mRNAs, directly interacting with metabolites as a means of regulating expression of the coding region via a secondary structural switch. In this review, we focus on recent insights into how these RNAs fold into complex architectures capable of both recognizing a specific small molecule compound and exerting regulatory control over downstream sequences, with an emphasis on transcriptional regulation.
Project description:The emergence of bacteria resistant to conventional antibiotics is of great concern in modern medicine because it renders ineffectiveness of the current empirical antibiotic therapies. Infections caused by vancomycin-resistant Staphylococcus aureus (VRSA) and vancomycin-intermediate S. aureus (VISA) strains represent a serious threat to global health due to their considerable morbidity and mortality rates. Therefore, there is an urgent need of research and development of new antimicrobial alternatives against these bacteria. In this context, the use of antimicrobial peptides (AMPs) is considered a promising alternative therapeutic strategy to control resistant strains. Therefore, a wide number of natural, artificial, and synthetic AMPs have been evaluated against VRSA and VISA strains, with great potential for clinical application. In this regard, we aimed to present a comprehensive and systematic review of research findings on AMPs that have shown antibacterial activity against vancomycin-resistant and vancomycin-intermediate resistant strains and clinical isolates of S. aureus, discussing their classification and origin, physicochemical and structural characteristics, and possible action mechanisms. This is the first review that includes all peptides that have shown antibacterial activity against VRSA and VISA strains exclusively.
Project description:Efficient action prediction is of central importance for the fluent workflow between humans and equally so for human-robot interaction. To achieve prediction, actions can be algorithmically encoded by a series of events, where every event corresponds to a change in a (static or dynamic) relation between some of the objects in the scene. These structures are similar to a context-free grammar and, importantly, within this framework the actual objects are irrelevant for prediction, only their relational changes matter. Manipulation actions and others can be uniquely encoded this way. Using a virtual reality setup and testing several different manipulation actions, here we show that humans predict actions in an event-based manner following the sequence of relational changes. Testing this with chained actions, we measure the percentage predictive temporal gain for humans and compare it to action-chains performed by robots showing that the gain is approximately equal. Event-based and, thus, object independent action recognition and prediction may be important for cognitively deducing properties of unknown objects seen in action, helping to address bootstrapping of object knowledge especially in infants.