Project description:Entamoeba histolytica infection may have various clinical manifestations. Nine out of ten E. histolytica infections remain asymptomatic, while the remainder become invasive and cause disease. The most common form of invasive infection is amebic diarrhea and colitis, whereas the most common extra-intestinal disease is amebic liver abscess. The underlying reasons for the different outcomes are unclear, but a recent study has shown that the parasite genotype is a contributor. To investigate this link further we have examined the genotypes of E. histolytica in stool- and liver abscess-derived samples from the same patients. Analysis of all 18 paired samples (16 from Bangladesh, one from the United States of America, and one from Italy) revealed that the intestinal and liver abscess amebae are genetically distinct. The results suggest either that E. histolytica subpopulations in the same infection show varying organ tropism, or that a DNA reorganization event takes place prior to or during metastasis from intestine to liver.
Project description:Entamoeba histolytica is the causative agent of amoebiasis, a potentially fatal diarrhoeal disease in the developing world. The parasite was named "histolytica" for its ability to destroy host tissues, which is probably driven by direct killing of human cells. The mechanism of human cell killing has been unclear, although the accepted model was that the parasites use secreted toxic effectors to kill cells before ingestion. Here we report the discovery that amoebae kill by ingesting distinct pieces of living human cells, resulting in intracellular calcium elevation and eventual cell death. After cell killing, amoebae detach and cease ingestion. Ingestion of human cell fragments is required for cell killing, and also contributes to invasion of intestinal tissue. The internalization of fragments of living human cells is reminiscent of trogocytosis (from Greek trogo, nibble) observed between immune cells, but amoebic trogocytosis differs because it results in death. The ingestion of live cell material and the rejection of corpses illuminate a stark contrast to the established model of dead cell clearance in multicellular organisms. These findings change the model for tissue destruction in amoebiasis and suggest an ancient origin of trogocytosis as a form of intercellular exchange.
Project description:The protozoan parasite Entamoeba histolytica causes a wide spectrum of intestinal infections. In severe cases, the trophozoites can breach the mucosal barrier, invade the intestinal epithelium and travel via the portal circulation to the liver, where they cause hepatic abscesses, which can prove fatal if left untreated. The host Extra Cellular Matrix (ECM) plays a crucial role in amoebic invasion by triggering an array of cellular responses in the parasite, including induction of actin rich adhesion structures. Similar actin rich protrusive structures, known as 'invadosomes', promote chemotactic migration of the metastatic cancer cells and non-transformed cells by remodeling the ECM. Recent studies showed a central role for Rab GTPases, the master regulators of vesicular trafficking, in biogenesis of invadosomes. Here, we showed that fibronectin, a major host ECM component induced actin remodeling in the parasite in a Rab21 dependent manner. The focalized actin structures formed were reminiscent of the mammalian invadosomes. By using various approaches, such as immunofluorescence confocal microscopy and scanning electron microscopy, along with in vitro invasion assay and matrix degradation assay, we show that the fibronectin induced formation of amoebic actin dots depend on the nucleotide status of the GTPase. The ECM components, fibronectin and collagen type I, displayed differential control over the formation of actin dots, with fibronectin positively and collagen type I negatively modulating it. The cell surface adhesion molecule Gal/GalNAc complex was also found to impose additional regulation on this process, which might have implication in collagen type I mediated suppression of actin dots.
Project description:A genome-wide transcriptional analysis of Entamoeba histolytica was performed on trophozoites isolated from the colon of six infected mice and from in vitro culture. Adaptation to the intestinal environment was accompanied by increases in a subset of cell signaling genes including transmembrane kinases, ras and rho family GTPases, and calcium binding proteins. Significant decreases in mRNA abundance for genes involved in glycolysis and concomitant increases in lipases were consistent with a change in energy metabolism. Defense against bacteria present in the intestine (but lacking from in vitro culture) was suggested by alterations in mRNA levels of genes similar to the AIG1 plant antibacterial proteins. Decreases in oxygen detoxification pathways were observed as expected in the anaerobic colonic lumen. Of the known virulence factors the most remarkable changes were a 20-35-fold increase in a cysteine proteinase four-like gene, and a 2-3-fold decrease in two members of the Gal/GalNAc lectin light subunit family. Control of the observed changes in mRNA abundance in the intestine might potentially rest with four related proteins with DNA binding domains that were down-regulated 6-16-fold in the intestinal environment. In conclusion, the first genome-wide analysis of the transcriptome of E. histolytica demonstrated that the vast majority of genes are transcribed in trophozoites, and that in the host intestine trophozoites altered the expression of mRNAs for genes implicated in metabolism, oxygen defense, cell signaling, virulence, antibacterial activity, and DNA binding. Keywords: Transcritional response to in vivo growth
Project description:Phenotypic and transcriptional profiling in Entamoeba histolytica reveal costs to fitness and adaptive responses associated with metronidazole resistance