Project description:A direct Pd-catalyzed C-H functionalization of benzoquinone (BQ) can be controlled to give either mono- or disubstituted BQ, including the installation of two different groups in a one-pot procedure. BQ can now be directly functionalized with aryl, heteroaryl, cycloalkyl, and cycloalkene groups and, moreover, the reaction is conducted in environmentally benign water or acetone as solvents.
Project description:A fast and convenient synthesis of arylamidines starting from readily available potassium aryltrifluoroborates and cyanamides is reported. The coupling was achieved by Pd(II)-catalysis in a one step 20 min microwave protocol using Pd(O(2)CCF(3)), 6-methyl-2,2'-bipyridyl, TFA, and MeOH, providing the corresponding arylamidines in moderate to excellent yields.
Project description:Palladium(II) in combination with a monodentate phosphine ligand enables the unprecedented direct and α-stereoselective catalytic synthesis of deoxyglycosides from glycals. Initial mechanistic studies suggest that in the presence of N-phenyl-2-(di-tert-butylphosphino)pyrrole as the ligand, the reaction proceeds via an alkoxy palladium intermediate that increases the proton acidity and oxygen nucleophilicity of the alcohol. The method is demonstrated with a wide range of glycal donors and acceptors, including substrates bearing alkene functionalities.
Project description:A series of low-molecular-weight, compact, and multifunctional cyclic alkenylsulfonyl fluorides were efficiently prepared from the corresponding alkenyl triflates. Palladium-catalyzed sulfur dioxide insertion using the surrogate reagent DABSO effects sulfinate formation, before trapping with an F electrophile delivers the sulfonyl fluorides. A broad range of functional groups are tolerated, and a correspondingly large collection of derivatization reactions are possible on the products, including substitution at sulfur, conjugate addition, and N-functionalization. Together, these attributes suggest that this method could find new applications in chemical biology.
Project description:3,5-Dimethylpyrazole was employed as a monodentate directing group for palladium-catalyzed ortho-sp2 C-H arylation with aryl iodides. The reaction shows good functional group tolerance and outstanding selectivity for mono- ortho-arylation. Ozonolysis of ortho-arylated arylpyrazoles gave acylated biphenylamines that were further arylated to afford unsymmetrically substituted 2,6-diarylacetanilides.
Project description:Methods that can simultaneously install multiple different functional groups to heteroarenes via C-H functionalizations are valuable for complex molecule synthesis, which, however, remain challenging to realize. Here we report the development of vicinal di-carbo-functionalization of indoles in a site- and regioselective manner, enabled by the palladium/norbornene (Pd/NBE) cooperative catalysis. The reaction is initiated by the Pd(II)-mediated C3-metalation and specifically promoted by the C1-substituted NBEs. The mild, scalable, and robust reaction conditions allow for a good substrate scope and excellent functional group tolerance. The resulting C2-arylated C3-alkenylated indoles can be converted to diverse synthetically useful scaffolds. The combined experimental and computational mechanistic study reveals the unique role of the C1-substituted NBE in accelerating the turnover-limiting oxidative addition step.
Project description:A new Pd-catalyzed reaction for the stereoselective synthesis of cyclopentane-fused benzocyclobutenes is described. These transformations likely proceed via carbamate-directed carbopalladation followed by intramolecular C-H activation of an alkylpalladium intermediate. The mechanistic relationship between these transformations and Pd-catalyzed reactions of gamma-(n-Boc-amino)alkenes with aryl bromides that afford pyrrolidines is discussed. Differences in reactivity between Pd-amino and Pd-amido complexes appear to play a key role in the outcome of these transformations.
Project description:The first direct and selective synthesis of substituted itaconimdes by palladium-catalyzed aminocarbonylation of alkynols is reported. Key to the success of this transformation is the use of a novel catalyst system involving ligand L11 and appropriate reaction conditions. In the protocol here presented, easily available propargylic alcohols react with N-nucleophiles including aryl- and alkylamines as well as aryl hydrazines to provide a broad variety of interesting heterocycles with high catalyst activity and excellent selectivity. The synthetic utility of the protocol is demonstrated in the synthesis of natural product 11 with aminocarbonylation as the key step. Mechanistic studies and control experiments reveal the crucial role of the hydroxyl group in the substrate for the control of selectivity.
Project description:α,β-Unsaturated carbonyl compounds are versatile intermediates in the synthesis of pharmaceuticals and biologically active compounds. Here, we report the discovery and application of Pd(DMSO)(2)(TFA)(2) as a catalyst for direct dehydrogenation of cyclohexanones and other cyclic ketones to the corresponding enones, using O(2) as the oxidant. The substrate scope includes heterocyclic ketones and several natural-product precursors.
Project description:BackgroundSmall polyfunctionalized heterocyclic compounds play important roles in the drug discovery process and in the isolation and structural identification of biological macromolecules. It is expected that ready access to diverse sets of heterocycles can not only help improving the known biological and pharmacokinetic properties of drugs, but also assist the discovery of molecules that exhibit biological effects beyond those associated with previously known macromolecules. By virtue of their inherent convergence, high productivity, their exploratory and complexity-generating power, multicomponent reactions (MCRs) are undoubtedly well suited for creating molecular diversity. The combination of MCRs with an efficient post-functionalization reaction has proven to be an efficient strategy to increase the skeleton diversity.ResultsThe Ugi reaction of an o-iodobenzaldehyde (2), an aniline (3), an isocyanide (4), and a carboxylic acid (5) afforded alpha-acetamido-alpha-phenylacetamide (6) in good to excellent yields. The palladium-catalyzed intramolecular C-H functionalization of these adducts under ligandless conditions provided the functionalized dihydrophenanthridines (1).ConclusionHighly functionalized dihydrophenanthridines are synthesized in only two steps from readily accessible starting materials in good to excellent overall yields.