Project description:The term "neuroacanthocytosis" (NA) is used for a spectrum of neurological disorders in which there are thorny red blood cells. While NA historically referred to disorders of lipoprotein absorption, we have promoted it as an overarching term for a group of basal ganglia disorders, with specific reference to two diseases that we defined as "core" NA syndromes. "Neuroacanthocytosis" has also been used to refer to a specific, now genetically-defined disease, otherwise known as "chorea-acanthocytosis". These various usages have resulted in diagnostic confusion, and in a number of cases have quite likely prevented the pursuance of precise, molecular, diagnosis. Disease nomenclature is an ever-evolving field, especially in the current era of expanding genetics, and naming proposals are often far from ideal. We, however, suggest that the term "neuroacanthocytosis" should no longer be generally used and if so, only with appropriate understanding of its limitations. Further, we propose that chorea-acanthocytosis be renamed as "VPS13A disease" in accordance with its genetic etiology.
Project description:The two core neuroacanthocytosis (NA) syndromes, chorea-acanthocytosis (ChAc) and McLeod syndrome, are progressive neurodegenerative disorders that primarily affect the basal ganglia. The characteristic phenotype comprises a variety of movement disorders including chorea, dystonia, and parkinsonism, as well as psychiatric and cognitive symptoms attributable to basal ganglia dysfunction. These disorders are symptomatically managed on a case-by-case basis, with very few practitioners seeing more than a single case in their careers.A literature search was performed on PubMed utilizing the terms neuroacanthocytosis, chorea-acanthocytosis, and McLeod syndrome, and articles were reviewed for mentions of therapies, successful or otherwise.There have been no blinded, controlled trials and only one retrospective case series describing ChAc. The various therapies that have been used in patients with NA syndromes are summarized.Management remains at present purely symptomatic, which is similar in principle to other more common basal ganglia neurodegenerative disorders such as Huntington's disease (HD) and Parkinson's disease (PD). However, there are some specific issues particular to NA syndromes that merit attention. An integrated multidisciplinary approach is the ideal management strategy for these complex and multifaceted neurodegenerative disorders.
Project description:BackgroundPanthothenate kinase-associated neurodegeneration (PKAN) belongs to a group of hereditary neurodegenerative disorders known as neuroacanthocytosis (NA). This genetically heterogeneous group of diseases is characterized by degeneration of neurons in the basal ganglia and by the presence of deformed red blood cells with thorny protrusions, acanthocytes, in the circulation.ObjectiveThe goal of our study is to elucidate the molecular mechanisms underlying this aberrant red cell morphology and the corresponding functional consequences. This could shed light on the etiology of the neurodegeneration.MethodsWe performed a qualitative and semi-quantitative morphological, immunofluorescent, biochemical and functional analysis of the red cells of several patients with PKAN and, for the first time, of the red cells of their family members.ResultsWe show that the blood of patients with PKAN contains not only variable numbers of acanthocytes, but also a wide range of other misshapen red cells. Immunofluorescent and immunoblot analyses suggest an altered membrane organization, rather than quantitative changes in protein expression. Strikingly, these changes are not limited to the red blood cells of PKAN patients, but are also present in the red cells of heterozygous carriers without neurological problems. Furthermore, changes are not only present in acanthocytes, but also in other red cells, including discocytes. The patients' cells, however, are more fragile, as observed in a spleen-mimicking device.ConclusionThese morphological, molecular and functional characteristics of red cells in patients with PKAN and their family members offer new tools for diagnosis and present a window into the pathophysiology of neuroacanthocytosis.
Project description:Neuroacanthocytosis (NA) refers to a group of heterogenous, rare genetic disorders, namely chorea acanthocytosis (ChAc), McLeod syndrome (MLS), Huntington's disease-like 2 (HDL2) and pantothenate kinase associated neurodegeneration (PKAN), that mainly affect the basal ganglia and are associated with similar neurological symptoms. PKAN is also assigned to a group of rare neurodegenerative diseases, known as NBIA (neurodegeneration with brain iron accumulation), associated with iron accumulation in the basal ganglia and progressive movement disorder. Acanthocytosis, the occurrence of misshaped erythrocytes with thorny protrusions, is frequently observed in ChAc and MLS patients but less prevalent in PKAN (about 10%) and HDL2 patients. The pathological factors that lead to the formation of the acanthocytic red blood cell shape are currently unknown. The aim of this study was to determine whether NA/NBIA acanthocytes differ in their functionality from normal erythrocytes. Several flow-cytometry-based assays were applied to test the physiological responses of the plasma membrane, namely drug-induced endocytosis, phosphatidylserine exposure and calcium uptake upon treatment with lysophosphatidic acid. ChAc red cell samples clearly showed a reduced response in drug-induced endovesiculation, lysophosphatidic acid-induced phosphatidylserine exposure, and calcium uptake. Impaired responses were also observed in acanthocyte-positive NBIA (PKAN) red cells but not in patient cells without shape abnormalities. These data suggest an "acanthocytic state" of the red cell where alterations in functional and interdependent membrane properties arise together with an acanthocytic cell shape. Further elucidation of the aberrant molecular mechanisms that cause this acanthocytic state may possibly help to evaluate the pathological pathways leading to neurodegeneration.
Project description:The unique red blood cell (RBC) properties that characterize the rare neuroacanthocytosis syndromes (NAS) have prompted the exploration of osmotic gradient ektacytometry (Osmoscan) as a diagnostic tool for these disorders. In this exploratory study, we assessed if Osmoscans can discriminate NAS from other neurodegenerative diseases. A comprehensive assessment was conducted using Osmoscan on a diverse group of patients, including healthy controls (n = 9), neuroacanthocytosis syndrome patients (n = 6, 2 VPS13A and 4 XK disease), Parkinson's disease patients (n = 6), Huntington's disease patients (n = 5), and amyotrophic lateral sclerosis patients (n = 4). Concurrently, we collected and analyzed RBC indices and patients' characteristics. Statistically significant changes were observed in NAS patients compared to healthy controls and other conditions, specifically in osmolality at minimal elongation index (Omin), maximal elongation index (EImax), the osmolality at half maximal elongation index in the hyperosmotic part of the curve (Ohyper), and the width of the curve close to the osmolality at maximal elongation index (Omax-width). This study represents an initial exploration of RBC properties from NAS patients using osmotic gradient ektacytometry. While specific parameters exhibited differences, only Ohyper and Omax-width yielded 100% specificity for other neurodegenerative diseases. Moreover, unique correlations between Osmoscan parameters and RBC indices in NAS versus controls were identified, such as osmolality at maximal elongation index (Omax) vs. mean cellular hemoglobin content (MCH) and minimal elongation index (EImin) vs. red blood cell distribution width (RDW). Given the limited sample size, further studies are essential to establish diagnostic guidelines based on these findings.
Project description:ObjectiveTo determine the molecular nature of the neurological disease in the seminal family reported by Critchley et al in the 1960s, characterized by a hyperkinetic movement disorder and the appearance of acanthocytosis on peripheral blood smear. The eponym Levine-Critchley syndrome, subsequently termed neuroacanthocytosis, has been applied to symptomatically similar, but genetically distinct, disorders, resulting in clinical and diagnostic confusion.DesignDNA analysis.SettingMolecular biology research laboratories.ParticipantsFirst- and second-degree relatives of the original Critchley et al proband from Kentucky.Main outcome measuresMutations in the VPS13A gene.ResultsA mutation was identified in the VPS13A gene, responsible for autosomal recessive chorea-acanthocytosis. Haplotype reconstruction suggested that this mutation was homozygous in the proband.ConclusionThese findings strongly support the diagnosis of chorea-acanthocytosis as the disorder described in the original report.
Project description:BackgroundChorea-acanthocytosis (ChAc) is a rare hereditary autosomal recessive neurodegenerative disorder caused by pathogenic variants of the Vacuolar Protein Sorting 13 homolog A (VPS13A) gene. The variant spectrum of VPS13A has not been completely elucidated. This study reports two novel heterozygous VPS13A pathogenic variants in ChAc that expand the variant spectrum of VPS13A.Case presentationWe described a case of a 29-year-old man with typical clinical manifestations of ChAc, including chorea, orofacial lingual dyskinesia, vocal tics, elevated serum biochemical indicators, increased acanthocytes in peripheral blood, and caudate nucleus atrophy. Next-generation sequencing revealed two heterozygous variants of VPS13A: a nonsense variant (NM_033305.2: c.8215G > T, p. Glu2739Ter) and a deletion variant in the exons 25-31.ConclusionThe identified nonsense variant gives rise to premature translation termination, while the deletion variant is expected to cause a significant in-frame deletion of amino acid residues in the encoded protein. Both variants are considered to be pathogenic and result in loss-of-function proteins. These findings have implications for the genetic counseling of patients with VPS13A variants.
Project description:There have been significant advances in neuroacanthocytosis (NA) syndromes in the past 20 years, however, confusion still exists regarding the precise nature of these disorders and the correct nomenclature. This article seeks to clarify these issues and to summarise the recent literature in the field. The four key NA syndromes are described here-chorea-acanthocytosis, McLeod syndrome, Huntington's disease-like 2, and pantothenate kinase- associated neurodegeneration. In the first two, acanthocytosis is a frequent, although not invariable, finding; in the second two, it occurs in approximately 10% of patients. Degeneration affecting the basal ganglia is the key neuropathologic finding, thus the clinical presentations can be remarkably similar. The characteristic phenotype comprises a variety of movement disorders, including chorea, dystonia, and parkinsonism, and also psychiatric and cognitive symptoms attributable to basal ganglia dysfunction. The age of onset, inheritance patterns, and ethnic background differ in each condition, providing diagnostic clues. Other investigations, including routine blood testing and neuroimaging can be informative. Genetic diagnosis, if available, provides a definitive diagnosis, and is important for genetic counseling, and hopefully molecular therapies in the future. In this article I provide a historical perspective on each NA syndrome. The first 3 disorders, chorea-acanthocytosis, McLeod syndrome, Huntington's disease-like 2, are discussed in detail, with a comprehensive review of the literature to date for each, while pantothenate kinase-associated neurodegeneration is presented in summary, as this disorder has recently been reviewed in this journal. Therapy for all of these diseases is, at present, purely symptomatic.