Ontology highlight
ABSTRACT: Background
Diarrhea kills 2 million children worldwide each year, yet an etiological agent is not found in approximately 30-50% of cases. Picornaviral genera such as enterovirus, kobuvirus, cosavirus, parechovirus, hepatovirus, teschovirus, and cardiovirus have all been found in human and animal diarrhea. Modern technologies, especially deep sequencing, allow rapid, high-throughput screening of clinical samples such as stool for new infectious agents associated with human disease.Results
A pool of 141 pediatric gastroenteritis samples that were previously found to be negative for known diarrheal viruses was subjected to pyrosequencing. From a total of 937,935 sequence reads, a collection of 849 reads distantly related to Aichi virus were assembled and found to comprise 75% of a novel picornavirus genome. The complete genome was subsequently cloned and found to share 52.3% nucleotide pairwise identity and 38.9% amino acid identity to Aichi virus. The low level of sequence identity suggests a novel picornavirus genus which we have designated klassevirus. Blinded screening of 751 stool specimens from both symptomatic and asymptomatic individuals revealed a second positive case of klassevirus infection, which was subsequently found to be from the index case's 11-month old twin.Conclusion
We report the discovery of human klassevirus 1, a member of a novel picornavirus genus, in stool from two infants from Northern California. Further characterization and epidemiological studies will be required to establish whether klasseviruses are significant causes of human infection.
SUBMITTER: Greninger AL
PROVIDER: S-EPMC2709156 | biostudies-literature | 2009 Jun
REPOSITORIES: biostudies-literature
Virology journal 20090618
<h4>Background</h4>Diarrhea kills 2 million children worldwide each year, yet an etiological agent is not found in approximately 30-50% of cases. Picornaviral genera such as enterovirus, kobuvirus, cosavirus, parechovirus, hepatovirus, teschovirus, and cardiovirus have all been found in human and animal diarrhea. Modern technologies, especially deep sequencing, allow rapid, high-throughput screening of clinical samples such as stool for new infectious agents associated with human disease.<h4>Res ...[more]