Project description:Introduction The purpose of this article is to present the collective experiences of six federally-funded critical congenital heart disease (CCHD) newborn screening implementation projects to assist federal and state policy makers and public health to implement CCHD screening. Methods A qualitative assessment and summary from six demonstration project grantees and other state representatives involved in the implementation of CCHD screening programs are presented in the following areas: legislation, provider and family education, screening algorithms and interpretation, data collection and quality improvement, telemedicine, home and rural births, and neonatal intensive care unit populations. Results The most common challenges to implementation include: lack of uniform legislative and statutory mandates for screening programs, lack of funding/resources, difficulty in screening algorithm interpretation, limited availability of pediatric echocardiography, and integrating data collection and reporting with existing newborn screening systems. Identified solutions include: programs should consider integrating third party insurers and other partners early in the legislative/statutory process; development of visual tools and language modification to assist in the interpretation of algorithms, training programs for adult sonographers to perform neonatal echocardiography, building upon existing newborn screening systems, and using automated data transfer mechanisms. Discussion Continued and expanded surveillance, research, prevention and education efforts are needed to inform screening programs, with an aim to reduce morbidity, mortality and other adverse consequences for individuals and families affected by CCHD.
Project description:Newborn screening for critical congenital heart defects (CCHD) was added to the US Recommended Uniform Screening Panel in 2011. Within 4 years, 46 states and the District of Columbia had adopted it into their newborn screening program, leading to CCHD screening being nearly universal in the United States. This rapid adoption occurred while there were still questions about the effectiveness of the recommended screening protocol and barriers to follow-up for infants with a positive screen. In response, the Centers for Disease Control and Prevention partnered with the American Academy of Pediatrics to convene an expert panel between January and September 2015 representing a broad array of primary care, neonatology, pediatric cardiology, nursing, midwifery, public health, and advocacy communities. The panel's goal was to review current practices in newborn screening for CCHD and to identify opportunities for improvement. In this article, we describe the experience of CCHD screening in the United States with regard to: (1) identifying the target lesions for CCHD screening; (2) optimizing the algorithm for screening; (3) determining state-level challenges to implementation and surveillance of CCHD; (4) educating all stakeholders; (5) performing screening using the proper equipment and in a cost-effective manner; and (6) implementing screening in special settings such as the NICU, out-of-hospital settings, and areas of high altitude.
Project description:Newborn screening (NBS) for Severe Combined Immunodeficiency (SCID) by measurement of T-cell receptor excision circles (TRECs) successfully identifies newborns with SCID and severe T-cell lymphopenia, as intended. At the same time, NBS programs face the challenge of false positive results, with a disproportionately high number in the premature newborn population. This study evaluates TREC values and SCID screening outcomes in premature newborns and elucidates evidence-based SCID screening practices that reduce unnecessary follow-up activities in this population. De-identified individual SCID newborn screening data and aggregate SCID screening data were obtained from seven states across the US for babies born between 2018 and 2020. Relevant statistics were performed on data pooled from these states to quantify screening performance metrics and clinical impact on various birth and gestational age categories of newborns. The data were normalized using multiples-of-the-median (MoM) values to allow for the aggregation of data across states. The aggregation of NBS data across a range of NBS programs highlighted the trajectory of TREC values over time, both between and within newborns, and provides evidence for improved SCID screening recommendations in the premature and low birth weight population.
Project description:BackgroundExpanded carrier screening (ECS) utilizes high-throughput next-generation sequencing to evaluate an individual's carrier status for multiple conditions. Combined malonic and methylmalonic aciduria (CMAMMA) due to ACSF3 deficiency is a rare inherited disease included in such screening panels. Some cases have been reported with metabolic symptoms in childhood yet other cases describe a benign clinical course, suggesting the clinical phenotype is not well defined.Methods/case reportClinical and laboratory findings during the prenatal period were obtained retrospectively from medical records.ResultsA 37-year-old nulliparous woman and her partner were each identified as carriers of ACSF3 variants and presented at 9 weeks gestation for prenatal genetic consultation. The couple received extensive genetic counseling and proceeded with chorionic villus sampling at 11 weeks gestation. Subsequent analysis confirmed that the fetus inherited both parental ACSF variants. The couple was devastated by the results and after reviewing options of pregnancy continuation and termination, they decided to terminate the pregnancy. Following this decision, the patient was diagnosed with acute stress disorder.ConclusionThis case highlights how expanded carrier screening adds complexity to reproductive decision-making. Stronger guidelines and additional research are needed to direct and evaluate the timing, composition, and implementation of ECS panels.
Project description:BackgroundNext-generation sequencing (NGS)-based panels have gained traction as a strategy for reproductive carrier screening. Their value for screening Ashkenazi Jewish (AJ) individuals, who have benefited greatly from population-wide targeted testing, as well as Sephardi/Mizrahi Jewish (SMJ) individuals (an underserved population), has not been fully explored.MethodsThe clinical utilization by 6,805 self-reported Jewish individuals of an expanded NGS panel, along with several ancillary assays, was assessed retrospectively. Data were extracted for a subset of 96 diseases that, during the panel design phase, were classified as being AJ-, SMJ-, or pan-Jewish/pan-ethnic-relevant.Results64.6% of individuals were identified as carriers of one or more of these 96 diseases. Over 80% of the reported variants would have been missed by following recommended AJ screening guidelines. 10.7% of variants reported for AJs were in "SMJ-relevant genes," and 31.2% reported for SMJs were in "AJ-relevant genes." Roughly 2.5% of individuals carried a novel, likely pathogenic variant. One in 16 linked cohort couples was identified as a carrier couple for at least one of these 96 diseases.ConclusionFor maximal carrier identification, this study supports using expanded NGS panels for individuals of all Jewish backgrounds. This approach can better empower at-risk couples for reproductive decision making.
Project description:Next generation sequencing (NGS) can detect carrier status for rare recessive disorders, informing couples about their reproductive risk. The recent ACMG recommendations support offering NGS-based carrier screening (NGS-CS) in an ethnic and population-neutral manner for all genes that have a carrier frequency >1/200 (based on GnomAD). To evaluate current challenges for NGS-CS, we focused on the ciliopathies, a well-studied group of rare recessive disorders. We analyzed 118 ciliopathy genes by whole exome sequencing in ~400 healthy local individuals and ~1000 individuals from the UK1958-birth cohort. We found 20% of healthy individuals (1% of couples) to be carriers of reportable variants in a ciliopathy gene, while 50% (4% of couples) carry variants of uncertain significance (VUS). This large proportion of VUS is partly explained by the limited utility of the ACMG/AMP variant-interpretation criteria in healthy individuals, where phenotypic match or segregation criteria cannot be used. Most missense variants are thus classified as VUS and not reported, which reduces the negative predictive value of the screening test. We show how gene-specific variation patterns and structural protein information can help prioritize variants most likely to be disease-causing, for (future) functional assays. Even when considering only strictly pathogenic variants, the observed carrier frequency is substantially higher than expected based on estimated disease prevalence, challenging the 1/200 carrier frequency cut-off proposed for choice of genes to screen. Given the challenges linked to variant interpretation in healthy individuals and the uncertainties about true carrier frequencies, genetic counseling must clearly disclose these limitations of NGS-CS.
Project description:BackgroundNewborn screening (NBS) for medium chain acyl-CoA dehydrogenase deficiency (MCADD), one of the most common disorders identified, uses measurement of octanoylcarnitine (C8) from dried blood spots. In the state of Ohio, as in many places, primary care providers, with or without consultation from a metabolic specialist, may perform "confirmatory testing", with the final diagnostic decision returned to the state. Confirmatory testing may involve measurement of metabolites, enzyme analysis, mutation screening, or sequencing. We now report sequencing results for infants said to have "false positive" NBS results for MCAD deficiency, or who died before confirmatory testing could be performed.MethodsDried blood spots (DBS) were obtained from all 18 available NBS cards identified as "false positive" by NBS for the 3 year period after screening began in Ohio in 2003 (N=20, thus 2 had no DBS available), and from all 6 infants with abnormal screens who died before confirmatory testing could be obtained. DNA extracted from DBS was screened for the common c.985A>G mutation in exon 11 of the ACADM gene, using a specific restriction digest method, followed by sequencing of the 12 exons, intron-exon junctions, and several hundred base pairs of the 5' untranslated region.ResultsThe NBS cut-off value for C8 used was 0.7 μmol/L. Sequencing of ACADM in six neonates with elevated C8 on NBS who died before confirmatory testing was obtained did not identify any significant variants in the coding region of the gene, suggesting that MCADD was not a contributing factor in these deaths. The mean C8 for the 18 surviving infants labeled as "False Positives" was 0.90 (95%CI 0.77-1.15), much lower than the mean value for confirmed cases. Ten of the 18 were premature births weighing <1200 g, the rest were normal sized and full term. Eight infants, mostly full term with appropriate birth weight, were heterozygous for the common c.985A>G mutation; one of those also has a novel sequence change identified in exon 9 that predicts a PRO to LEU change at residue 258 of the protein. Both the phase and any possible clinical significance of the variant are unknown, but several lines of evidence suggest that it could lead to protein malfunction. That child had an NBS C8 of 2.2, more than double the mean for the False Positive group. Unfortunately, the study design did not provide clinical outcome data, but the child is not known to have presented clinically by age 7 years.ConclusionsThese results suggest that sequencing of ACADM from dried blood spots can be one useful follow-up tool to provide accurate genetic counseling in the situation of an infant with elevated C8 on NBS who dies before confirmatory testing is obtained. Of surviving neonates, there appear to be two populations of infants with false positive NBS C8 values: 1) term AGA infants who are heterozygous for the common c.985A>G mutation, and, 2) premature infants, regardless of carrier status. The finding of two sequence variants in an infant reported to the state as not affected suggests the possibility that some infants with two mutations may be reported as normal at follow-up. State registries may wish to consider asking that metabolic specialists, who are most familiar with the variability of these rare disorders, be involved in the final diagnostic evaluation. Finally, providers may wish to consider ACADM sequencing, or other diagnostic testing, as part of the confirmatory evaluation for infants with NBS C8 concentrations that are significantly above the cut-off value, even if plasma and urine metabolites are not strikingly increased.
Project description:Very long-chain acyl-CoA dehydrogenase deficiency (VLCADD) is a rare autosomal recessive disorder of fatty acid metabolism with a variable presentation. The aim of this study was to describe five patients with VLCADD diagnosed through the pilot study and expanded newborn screening (NBS) program that started in 2018 in Slovenia. Four patients were diagnosed through the expanded NBS program with tandem mass spectrometry; one patient was previously diagnosed in a pilot study preceding the NBS implementation. Confirmatory testing consisted of acylcarnitines analysis in dried blood spots, organic acids profiling in urine, genetic analysis of ACADVL gene, and enzyme activity determination in lymphocytes or fibroblasts. Four newborns with specific elevation of acylcarnitines diagnostic for VLCADD and disease-specific acylcarnitines ratios (C14:1, C14, C14:2, C14:1/C2, C14:1/C16) were confirmed with genetic testing: all were compound heterozygotes, two of them had one previously unreported ACDVL gene variant each (NM_000018.3) c.1538C > G; (NP_000009) p.(Ala513Gly) and c.661A > G; p.(Ser221Gly), respectively. In addition, one patient diagnosed in the pilot study also had a specific elevation of acylcarnitines. Subsequent ACDVL genetic analysis confirmed compound heterozygosity. In agreement with the diagnosis, enzyme activity was reduced in five patients tested. In seven other newborns with positive screening results, only single allele variants were found in the ACDVL gene, so the diagnosis was not confirmed. Among these, two variants were novel, c.416T > C and c.1046C > A, respectively (p.Leu139Pro and p.Ala349Glu). In the first 2 years of the expanded NBS program in Slovenia altogether 30,000 newborns were screened. We diagnosed four cases of VLCADD. The estimated VLCADD incidence was 1:7,500 which was much higher than that of the medium-chain acyl-CoA dehydrogenase deficiency (MCADD) cases in the same period. Our study also provided one of the first descriptions of ACADVL variants in Central-Southeastern Europe and reported on 4 novel variants.
Project description:Expanded newborn screening (NBS) for genetic disorders has improved diagnosis of numerous treatable diseases, positively impacting children's health outcomes. However, research about the psychological impact of expanded NBS on families, especially mothers, has been mixed. Our study examined associations between maternal experiences of expanded NBS and subsequent psychosocial functioning and parenting stress in mothers whose infants received either true negative (TN), true positive (TP) or false positive (FP) results after a 4- to 6-month period. The Parenting Stress Index and the Depression, Anxiety and Stress Scale were used to assess symptoms of anxiety, stress and depression in 3 sets of mothers, whose infants received TN (n = 31), TP (n = 8) or FP (n = 18) results. Multivariate analyses of variance (MANOVA) results revealed no significant differences among these three groups of mothers regarding overall anxiety, stress and depression. However, FP mothers experienced lower levels of stress related to their own health compared to TN group. Two potential trends were also identified; results suggested TN mothers might experience higher levels of isolation than mothers in the TP group and that FP mothers might report higher stress levels in relation to spousal relationships compared to the TN group. FP mothers seemed to report similar or better levels of psychosocial functioning than TN mothers. Our findings are encouraging with respect to impacts of NBS on maternal well-being. We also identify key areas for improvement (parental education) and research (isolation and spousal relationships).
Project description:Proximal urea cycle disorders (PUCDs) have adverse outcomes such as intellectual disability and death, which may benefit from newborn screening (NBS) through early detection and prevention with early treatment. Ornithine transcarbamylase deficiency (OTCD) and carbamoyl phosphate synthetase 1 deficiency (CPS1D) are screened in six and eight states in the United States. We analyzed current evidence to see if it supports inclusion of PUCDs in the NBS panels based upon prevention potential, medical, diagnostic, treatment, and public health rationales. A literature review was performed in PubMed using MESH terms for OTCD, CPS1D, and NAGSD. A systematic review was performed in the hallmark of NBS inclusion criteria. We reviewed 31 articles. Molecular and biochemical diagnosis is available to provide diagnostic evidence. Untreated PUCDs have a significant burden with considerable developmental delay and mortality that may improve with early treatment. Tandem mass spectrometry can be used for NBS for PUCDs; however, citrulline and glutamine alone are not specific. Medical treatments currently available for PUCDs meet existing medical, diagnostic, treatment, and public health rationales. Improvement in NBS algorithms to increase sensitivity and specificity will allow earlier diagnosis and treatment to potentially improve disability and mortality rates.