Project description:Genome-wide expression and methylation profiling identifies novel targets with aberrant hypermethylation and reduced expression in low-risk myelodysplastic syndromes (MDSs). Gene expression profiling signatures may be used to classify the subtypes of Myelodysplastic syndrome (MDS) patients. However, there are few reports on the global methylation status in MDS. The integration of genome-wide epigenetic regulatory marks with gene expression levels would provide additional information regarding the biological differences between MDS and healthy controls. Gene expression and methylation status were measured using high-density microarrays. A total of 552 differentially methylated CpG loci were identified as being present in low-risk MDS; hypermethylated genes were more frequent than hypomethylated genes. In addition, mRNA expression profiling identified 1005 genes that significantly differed between low-risk MDS and the control group. Integrative analysis of the epigenetic and expression profiles revealed that 66.7% of the hypermethylated genes were underexpressed in low-risk MDS cases. Gene network analysis revealed molecular mechanisms associated with the low-risk MDS group, including altered apoptosis pathways. The two key apoptotic genes BCL2 and ETS1 were identified as silenced genes. In addition, the immune response and micro RNA biogenesis were affected by the hypermethylation and underexpression of IL27RA and DICER1. Our integrative analysis revealed that aberrant epigenetic regulation is a hallmark of low-risk MDS patients and could have a central role in these diseases. Low-risk MDS patients and age-matched controls without haematological malignancies were included in the study. Mononuclear cells were isolated from bone marrow samples of low-risk MDS patients and controls by density gradient (Ficoll). A cohort of 18 patients with low-risk MDS and seven controls were included in a simultaneous integrative study of methylation and expression, while the whole series was used as a control group of expression data.
Project description:Genome-wide expression and methylation profiling identifies novel targets with aberrant hypermethylation and reduced expression in low-risk myelodysplastic syndromes (MDSs). Gene expression profiling signatures may be used to classify the subtypes of Myelodysplastic syndrome (MDS) patients. However, there are few reports on the global methylation status in MDS. The integration of genome-wide epigenetic regulatory marks with gene expression levels would provide additional information regarding the biological differences between MDS and healthy controls. Gene expression and methylation status were measured using high-density microarrays. A total of 552 differentially methylated CpG loci were identified as being present in low-risk MDS; hypermethylated genes were more frequent than hypomethylated genes. In addition, mRNA expression profiling identified 1005 genes that significantly differed between low-risk MDS and the control group. Integrative analysis of the epigenetic and expression profiles revealed that 66.7% of the hypermethylated genes were underexpressed in low-risk MDS cases. Gene network analysis revealed molecular mechanisms associated with the low-risk MDS group, including altered apoptosis pathways. The two key apoptotic genes BCL2 and ETS1 were identified as silenced genes. In addition, the immune response and micro RNA biogenesis were affected by the hypermethylation and underexpression of IL27RA and DICER1. Our integrative analysis revealed that aberrant epigenetic regulation is a hallmark of low-risk MDS patients and could have a central role in these diseases. Low-risk MDS patients and age-matched controls without haematological malignancies were included in the study. Mononuclear cells were isolated from bone marrow samples of low-risk MDS patients and controls by density gradient (Ficoll). A cohort of 18 patients with low-risk MDS and seven controls were included in a simultaneous integrative study of methylation (using Methylated CpG Island Amplification and Microarrays, MCAM) and expression (using Affymetrix microarrays HG-U133 Plus 2), while the whole series was used as a control group of expression data.
Project description:The majority of myelodysplastic syndrome (MDS) patients belong to the International Prognostic Scoring System (IPSS) and IPSS-revised (IPSS-R) lower-risk categories. Their precise diagnostics and prognostic stratification is often a challenge, but may ensure the optimization of therapy. The availability of diverse treatment options has significantly improved the quality of life and survival of this group of patients. Anemia is the most relevant cytopenia in terms of frequency and symptoms in lower-risk MDS, and may be treated successfully with erythropoietic stimulating agents, provided a careful selection is performed on the basis of IPSS-R, endogenous erythropoietin levels, and transfusion independence. Doses and duration of therapy of erythropoietic-stimulating agents (ESAs) are critical to determine efficacy. In case a patient fails ESA treatment, the available options may include lenalidomide (approved for del5q positive cases), hypomethylating agents, and a rather large number of experimental agents, whose clinical trials should be offered to a larger number of MDS patients. The choice for second-line treatment must take into account biologic, cytogenetic, and molecular-identified characteristics of individual patients, as well as frailty and comorbidities. Other cytopenias are less frequently presenting as isolated. Specific therapy for thrombocytopenia has been proposed in experimental clinical trials with thrombomimetic agents that have shown good efficacy, but raised some safety concern. Although neutropenia is targeted symptomatically with growth factor supportive care, the immunosuppressive treatments are indicated mainly for pancytopenic, hypoplastic lower-risk MDS; they are not widely used because of their toxicity, despite the fact that they may induce responses. Finally, hematopoietic stem cell transplant is the curative option also for lower-risk MDS and timing should be carefully evaluated, balancing toxicity and the possibility of survival advantage. Finally, even when considered suitable for lower-risk MDS, transplant application is limited to the rarer fit and younger MDS patient.
Project description:Background: Chromosomal abnormalities play an important role in the diagnosis and prognosis of patients with myelodysplastic syndromes (MDSs). The single-nucleotide polymorphism array (SNP-A) technique has gained popularity due to its improved resolution compared to that of metaphase cytogenetic (MC) analysis. Methods: A total of 376 individuals were recruited from two medical centers in China, including 350 patients and 26 healthy individuals. Among these patients, 200 were diagnosed with de novo MDS, 25 with myeloproliferative neoplasm (MPN), 63 with primary acute myeloid leukemia (AML), and 62 with idiopathic cytopenia of undetermined significance (ICUS). We evaluated the significance of abnormal chromosomes detected by SNP-A in the diagnosis and prognosis of MDS-related disorders. Results: (1) When certain chromosomal abnormalities could not be detected by conventional MC methods, these abnormalities could be detected more efficiently by the SNP-A method. With SNP-A, the detection rates of submicroscopic or cryptic aberrations in the MDS, MPN, and AML patients with normal MC findings were 32.8, 30.8, and 30%, respectively. (2) The chromosomal abnormalities detected by SNP-A had a very important value for the prognosis of patients with MDSs, especially in the low-risk group. The survival of patients with abnormal chromosomes detected by SNP-A was significantly lower than that of patients with no detected chromosomal abnormalities; this difference was observed in overall survival (OS) (P = 0.001) and progression-free survival (PFS) [24 months vs. not reach (NR); P = 0.008]. The patients with multiple chromosomal abnormalities detected by SNP-A had an inferior prognosis, and SNP-A abnormalities (≥3 per patient) were found to be an independent predictor of poor prognosis in patients with MDSs [hazard ratio (HR) = 2.40, P = 0.002]. (3) Patients with ICUS may progress to myeloid malignancies, but most patients often maintain a stable ICUS status for many years without progression. An ICUS patient found to have an MDS-related karyotype would be rediagnosed with MDS. SNP-A can efficiently detect chromosomal abnormalities, which would be important for assessing the evolution of ICUS. In our study, 17 ICUS patients with SNP-A-detected abnormalities developed typical MDSs. Conclusions: SNP-A can help evaluate the prognosis of patients with MDSs and better assess the risk of disease progression for patients with ICUS.
Project description:Genome-wide expression and methylation profiling identifies novel targets with aberrant hypermethylation and reduced expression in low-risk myelodysplastic syndromes (MDSs). Gene expression profiling signatures may be used to classify the subtypes of Myelodysplastic syndrome (MDS) patients. However, there are few reports on the global methylation status in MDS. The integration of genome-wide epigenetic regulatory marks with gene expression levels would provide additional information regarding the biological differences between MDS and healthy controls. Gene expression and methylation status were measured using high-density microarrays. A total of 552 differentially methylated CpG loci were identified as being present in low-risk MDS; hypermethylated genes were more frequent than hypomethylated genes. In addition, mRNA expression profiling identified 1005 genes that significantly differed between low-risk MDS and the control group. Integrative analysis of the epigenetic and expression profiles revealed that 66.7% of the hypermethylated genes were underexpressed in low-risk MDS cases. Gene network analysis revealed molecular mechanisms associated with the low-risk MDS group, including altered apoptosis pathways. The two key apoptotic genes BCL2 and ETS1 were identified as silenced genes. In addition, the immune response and micro RNA biogenesis were affected by the hypermethylation and underexpression of IL27RA and DICER1. Our integrative analysis revealed that aberrant epigenetic regulation is a hallmark of low-risk MDS patients and could have a central role in these diseases.
Project description:Genome-wide expression and methylation profiling identifies novel targets with aberrant hypermethylation and reduced expression in low-risk myelodysplastic syndromes (MDSs). Gene expression profiling signatures may be used to classify the subtypes of Myelodysplastic syndrome (MDS) patients. However, there are few reports on the global methylation status in MDS. The integration of genome-wide epigenetic regulatory marks with gene expression levels would provide additional information regarding the biological differences between MDS and healthy controls. Gene expression and methylation status were measured using high-density microarrays. A total of 552 differentially methylated CpG loci were identified as being present in low-risk MDS; hypermethylated genes were more frequent than hypomethylated genes. In addition, mRNA expression profiling identified 1005 genes that significantly differed between low-risk MDS and the control group. Integrative analysis of the epigenetic and expression profiles revealed that 66.7% of the hypermethylated genes were underexpressed in low-risk MDS cases. Gene network analysis revealed molecular mechanisms associated with the low-risk MDS group, including altered apoptosis pathways. The two key apoptotic genes BCL2 and ETS1 were identified as silenced genes. In addition, the immune response and micro RNA biogenesis were affected by the hypermethylation and underexpression of IL27RA and DICER1. Our integrative analysis revealed that aberrant epigenetic regulation is a hallmark of low-risk MDS patients and could have a central role in these diseases.
Project description:The clinical relevance of variant allele frequency (VAF) of recurrent mutations in myelodysplastic syndromes (MDS) has been increasingly reported. However, the prognostic value of mutational VAF across the genetic spectrum of MDS has not been extensively evaluated. In this study, we profiled the mutational spectrum of 382 newly diagnosed MDS patients using targeted next-generation sequencing. Exploratory analysis found that mutational VAF of some genes including TET2, TP53, and SF3B1 had significant associations with patient survival. Specifically, TET2 VAF ≥ 32% (HR 1.69, P = 0.025) and TP53 VAF ≥ 27% (HR 3.58, P < 0.001) were independently associated with shorter overall survival (OS). In contrast, SF3B1 VAF ≥ 15% had an independent association with better prognosis (HR 0.52, P = 0.048). In addition, high TET2 VAF was associated with an increased response to hypomethylating agents relative to low TET2 VAF (P = 0.009). Patients with high TP53 VAF more often possessed complex karyotypes than those with low VAF (P = 0.034). And patients with high SF3B1 VAF were more frequently classified as MDS with ring sideroblasts (MDS-RS) category than those with low VAF (P = 0.012). Meanwhile, we found that for some other genes like EZH2 and NRAS, once their mutations appeared, it meant poor survival regardless of mutational VAF. These findings suggest that mutational VAF of certain genes should be considered into the routine prognostic prediction and risk stratification of MDS patients.
Project description:Genetic polymorphism of X-ray repair crosscomplementing group 3 (XRCC3) Thr241Met has been implicated to alter the risk of ovarian cancer, but the results are controversial. In order to get a more precise result, a meta-analysis was performed. All eligible studies were identified through an extensive search in PubMed, Excerpta Medica Database (Embase), Chinese National Knowledge Infrastructure database, and Chinese Biomedical Literature Database before August 2013. The association between the XRCC3 Thr241Met polymorphism and ovarian cancer risk was conducted by odds ratios (ORs) and 95% confidence intervals (95% CIs). Finally, a total of four publications including seven studies with 3,635 cases and 5,473 controls were included in our meta-analysis. Overall, there was no association between XRCC3 Thr241Met polymorphism and risk of ovarian cancer under all five genetic models in overall population (T vs. C: OR = 0.99, 95 % CI = 0.960-1.03, P = 0.752; TT vs. CC: OR = 1.00, 95% CI = 0.91-1.10, P = 0.943; TC vs. TT: OR = 0.97, 95% CI = 0.92-1.04, P = 0.396, Fig. 1; TT vs.Tc/ccOR = 1.00, 95% CI = 0.91-1.12, P = 0.874; TT/TC vs. CC: OR = 0.98, 95% CI = 0.94-1.03, P = 0.486). In the subgroup analysis according to ethnicity, the results suggested that XRCC3 Thr241Met polymorphism was not associated with the risk of ovarian cancer in Caucasians population. No significant association was found between the XRCC3 Thr241 Met polymorphism and the risk of ovarian cancer. Given the limited sample size and ethnicities included in the meta-analysis, further large scaled and well-designed studies are needed to confirm our results.
Project description:The myelodysplastic syndromes are a diverse group of clonal stem cell disorders characterized by ineffective hematopoiesis, peripheral cytopenias, and an increased propensity to evolve to acute myeloid leukemia. The molecular pathogenesis of these disorders is poorly understood, but recurring chromosomal abnormalities occur in approximately 50% of cases and are the focus of much investigation. The availability of newer molecular techniques has allowed the identification of additional genetic aberrations, including mutations and epigenetic changes of prognostic and potential therapeutic importance. This review focuses on the key role of cytogenetic analysis in myelodysplastic syndromes in the context of the diagnosis, prognosis, and pathogenesis of these disorders.
Project description:Myelodysplastic syndromes (MDS) are a heterogeneous group of hematopoietic stem cell disorders characterized by ineffective hematopoiesis with abnormal blood cell development (dysplasia) leading to cytopenias and an increased risk for progression to acute myeloid leukemia (AML). Patients with MDS can generally be classified as lower- (LR-MDS) or higher-risk (HR-MDS). As treatment goals for patients with LR-MDS and those with HR-MDS differ significantly, appropriate diagnosis, classification, and follow-up are critical for correct disease management. In this review, we focus on the diagnosis, prognosis, and treatment options, as well as the prediction of the disease course and monitoring of treatment response in patients with LR-MDS. We discuss how next-generation sequencing, increasing knowledge on mechanisms of MDS pathogenesis, and novel therapies may change the current treatment landscape in LR-MDS and why structured assessments of responses, toxicities, and patient-reported outcomes should be incorporated into routine clinical practice.