Unknown

Dataset Information

0

An allosteric mechanism for inhibiting HIV-1 integrase with a small molecule.


ABSTRACT: HIV-1 integrase (IN) is a validated target for developing antiretroviral inhibitors. Using affinity acetylation and mass spectrometric (MS) analysis, we previously identified a tetra-acetylated inhibitor (2E)-3-[3,4-bis(acetoxy)phenyl]-2-propenoate-N-[(2E)-3-[3,4-bis(acetyloxy)phenyl]-1-oxo-2-propenyl]-L-serine methyl ester; compound 1] that selectively modified Lys173 at the IN dimer interface. Here we extend our efforts to dissect the mechanism of inhibition and structural features that are important for the selective binding of compound 1. Using a subunit exchange assay, we found that the inhibitor strongly modulates dynamic interactions between IN subunits. Restricting such interactions does not directly interfere with IN binding to DNA substrates or cellular cofactor lens epithelium-derived growth factor, but it compromises the formation of the fully functional nucleoprotein complex. Studies comparing compound 1 with a structurally related IN inhibitor, the tetra-acetylated-chicoric acid derivative (2R,3R)-2,3-bis[[(2E)-3-[3,4-bis(acetyloxy)phenyl]-1-oxo-2-propen-1-yl]oxy]-butanedioic acid (compound 2), indicated striking mechanistic differences between these agents. The structures of the two inhibitors differ only in their central linker regions, with compounds 1 and 2 containing a single methyl ester group and two carboxylic acids, respectively. MS experiments highlighted the importance of these structural differences for selective binding of compound 1 to the IN dimer interface. Moreover, molecular modeling of compound 1 complexed to IN identified a potential inhibitor binding cavity and provided structural clues regarding a possible role of the central methyl ester group in establishing an extensive hydrogen bonding network with both interacting subunits. The proposed mechanism of action and binding site for the small-molecule inhibitor identified in the present study provide an attractive venue for developing allosteric inhibitors of HIV-1 IN.

SUBMITTER: Kessl JJ 

PROVIDER: S-EPMC2769043 | biostudies-literature | 2009 Oct

REPOSITORIES: biostudies-literature

altmetric image

Publications

An allosteric mechanism for inhibiting HIV-1 integrase with a small molecule.

Kessl Jacques J JJ   Eidahl Jocelyn O JO   Shkriabai Nikolozi N   Zhao Zhuojun Z   McKee Christopher J CJ   Hess Sonja S   Burke Terrence R TR   Kvaratskhelia Mamuka M  

Molecular pharmacology 20090728 4


HIV-1 integrase (IN) is a validated target for developing antiretroviral inhibitors. Using affinity acetylation and mass spectrometric (MS) analysis, we previously identified a tetra-acetylated inhibitor (2E)-3-[3,4-bis(acetoxy)phenyl]-2-propenoate-N-[(2E)-3-[3,4-bis(acetyloxy)phenyl]-1-oxo-2-propenyl]-L-serine methyl ester; compound 1] that selectively modified Lys173 at the IN dimer interface. Here we extend our efforts to dissect the mechanism of inhibition and structural features that are im  ...[more]

Similar Datasets

| S-EPMC3351293 | biostudies-literature
| S-EPMC1502509 | biostudies-literature
| S-EPMC6130367 | biostudies-literature
| S-EPMC3115487 | biostudies-literature
| S-EPMC1857318 | biostudies-literature
| S-EPMC3421592 | biostudies-literature
| S-EPMC5018460 | biostudies-literature
| S-EPMC9324412 | biostudies-literature
| S-EPMC6581505 | biostudies-literature
| S-EPMC3944435 | biostudies-literature