Unknown

Dataset Information

0

Chromatin remodelers act globally, sequence positions nucleosomes locally.


ABSTRACT: The precise placement of nucleosomes has large regulatory effects on gene expression. Recent work suggests that nucleosome placement is regulated in part by the affinity of the underlying DNA sequence for the histone octamer. Nucleosome locations are also regulated by several different ATP-dependent chromatin remodeling enzymes. This raises the question of whether DNA sequence influences the activity of chromatin remodeling enzymes. DNA sequence could most simply regulate nucleosome remodeling through its effect on nucleosome stability. In such a model, unstable nucleosomes would be remodeled faster than stable nucleosomes. It is also possible that certain DNA elements could regulate remodeling by inhibiting the interaction of nucleosomes with the remodeling enzyme. A third possibility is that DNA sequence could regulate the outcome of remodeling by influencing how reaction intermediates collapse into a particular set of stable nucleosomal positions. Here we dissect the contribution from these potential mechanisms to the activities of yeast RSC and human ACF, which are representative members of two major classes of remodeling complexes. We find that varying the histone-DNA affinity over 3 orders of magnitude has negligible effects on the rates of nucleosome remodeling and ATP hydrolysis by these two enzymes. This suggests that the rate-limiting step for nucleosome remodeling may not involve the disruption of histone-DNA contacts. We further find that a specific curved DNA element previously hypothesized to inhibit ACF activity does not inhibit substrate binding or remodeling by ACF. The element, however, does influence the distribution of nucleosome positions generated by ACF. Our data support a model in which remodeling enzymes move nucleosomes to new locations by a general sequence-independent mechanism. However, consequent to the rate-limiting remodeling step, the local DNA sequence promotes a collapse of remodeling intermediates into highly resolved positions that are dictated by thermodynamic differences between adjacent positions.

SUBMITTER: Partensky PD 

PROVIDER: S-EPMC2813840 | biostudies-literature | 2009 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Chromatin remodelers act globally, sequence positions nucleosomes locally.

Partensky Peretz D PD   Narlikar Geeta J GJ  

Journal of molecular biology 20090518 1


The precise placement of nucleosomes has large regulatory effects on gene expression. Recent work suggests that nucleosome placement is regulated in part by the affinity of the underlying DNA sequence for the histone octamer. Nucleosome locations are also regulated by several different ATP-dependent chromatin remodeling enzymes. This raises the question of whether DNA sequence influences the activity of chromatin remodeling enzymes. DNA sequence could most simply regulate nucleosome remodeling t  ...[more]

Similar Datasets

| S-EPMC3825818 | biostudies-literature
| S-EPMC4090706 | biostudies-literature
| S-EPMC8163841 | biostudies-literature
| S-EPMC3585014 | biostudies-literature
| S-EPMC3094069 | biostudies-literature
| S-EPMC5039004 | biostudies-literature
| S-EPMC8184634 | biostudies-literature
| S-EPMC5728721 | biostudies-literature