Unknown

Dataset Information

0

Major histocompatibility complex genotyping with massively parallel pyrosequencing.


ABSTRACT: Major histocompatibility complex (MHC) genetics dictate adaptive cellular immune responses, making robust MHC genotyping methods essential for studies of infectious disease, vaccine development and transplantation. Nonhuman primates provide essential preclinical models for these areas of biomedical research. Unfortunately, given the unparalleled complexity of macaque MHCs, existing methodologies are inadequate for MHC typing of these key model animals. Here we use pyrosequencing of complementary DNA-PCR amplicons as a general approach to determine comprehensive MHC class I genotypes in nonhuman primates. More than 500 unique MHC class I sequences were resolved by sequence-based typing of rhesus, cynomolgus and pig-tailed macaques, nearly half of which have not been reported previously. The remarkable sensitivity of this approach in macaques demonstrates that pyrosequencing is viable for ultra-high-throughput MHC genotyping of primates, including humans.

SUBMITTER: Wiseman RW 

PROVIDER: S-EPMC2824247 | biostudies-literature | 2009 Nov

REPOSITORIES: biostudies-literature

altmetric image

Publications


Major histocompatibility complex (MHC) genetics dictate adaptive cellular immune responses, making robust MHC genotyping methods essential for studies of infectious disease, vaccine development and transplantation. Nonhuman primates provide essential preclinical models for these areas of biomedical research. Unfortunately, given the unparalleled complexity of macaque MHCs, existing methodologies are inadequate for MHC typing of these key model animals. Here we use pyrosequencing of complementary  ...[more]

Similar Datasets

| S-EPMC2323236 | biostudies-literature
| S-EPMC2725146 | biostudies-literature
| S-EPMC2910068 | biostudies-literature
| S-EPMC7878580 | biostudies-literature
| S-EPMC2819115 | biostudies-literature
| S-EPMC5587753 | biostudies-literature